
Q&A: JDJ Asks... IBM-Rational
Interview with Grady Booch 10

Feature: JSP 2.0 Technology Mark Roth

The community delivers a higher performing language 16

Graphical API: Trimming the Fat from Swing Marcus S. Zarra

Simple steps to improve the performance of Swing 30

Feature: Xlet: A Different Kind of Applet Xiaozhong Wang

for J2ME The life cycle of an Xlet 48

Network Connectivity: java.net.NetworkInterface Duane Morin

A road warrior’s friend – detecting network connections 58

Labs: ExtenXLS Java/XLS Toolkit Peter Curran

by Extentech Inc. – a pure Java API for Excel integration 62

JSR Watch: From Within the Java Community Onno Kluyt

Process Program More mobility, less complexity 72

From the Inside: The Lights Are On,
but No One’s Home Flipping bits 74

SYS-CON
MEDIA

RETAILERS PLEASE DISPLAY
UNTIL SEPTEMBER 30, 2003

From the Editor
Best Laid Plans...

Alan Williamson pg. 5

Viewpoint
In Medias Res

Bill Roth pg. 6

J2EE Insight
We Need More Innovation

Joseph Ottinger pg. 8

J2SE Insight
Sleeping Tigers

Jason Bell pg. 28

J2ME Insight
The MIDlet Marketplace

Glen Cordrey pg. 46

Industry News
pg. 68

Letters to the Editor
pg. 70

OPEN SOURCE VERSUS THE JAVA PLATFORM pg. 6

www.JavaDevelopersJournal.com

details on pg. 66

Web Services Edge West 2003

Sept. 30–Oct. 2, 2003
Santa Clara, CA

Introducing the integration technology

YOU WANT.
Introducing the Sonic Business Integration Suite. Built on the

world’s first enterprise service bus (ESB), a standards-based

infrastructure that reliably and cost-effectively connects appli-

cations and orchestrates business processes across the

extended enterprise. Extend your reach, cut costs and enhance

your business agility. Thus eliminating one more thing –

your headaches. To learn more,visit www.sonicsoftware.com.
Connect_Everything.

Achieve_Anything.™

Business Integration Suite

WE’VE ELIMINATED THE NEED
FOR MONOLITHIC BROKERS.
THE NEED FOR CENTRALIZED
PROCESS HUBS. THE NEED
FOR PROPRIETARY TOOL SETS.

© 2003 Zero G Software, Inc. Zero G, Zero G Software, and InstallAnywhere are trademarks or registered trademarks of Zero G Software, Inc. All other trademarks are property of their respective owners.

Why do industry leaders

choose Zero G?

Because, Zero G is the industry leader in multi-platform software deploy-

ment and updating. But, it didn't just happen overnight. Since 1996 we have

listened, adapted, and built our award-winning InstallAnywhere® and

PowerUpdate® products based on constant interaction with our customer-

partners,That’s why they have become the developers’deployment solution

of choice worldwide. It’s no wonder that industry leaders like Sun

Microsystems, Novell and Borland choose us.

Your software deployment partner

www.ZeroG.com

Made in Borland® Copyright © 2003 Borland Software Corporation. All rights reserved. Java and all Java-based marks are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries. All other marks are the property of their respective owners. • 20529.2

Borland® JBuilder® makes the fast faster because it works the way you work.

It knows what you need to do next, no matter what your style. JBuilder gives

you an active voice at every stage in the development process and is the devel-

oper's access point into the Borland Application Lifecycle solution — best-in-

class products integrated to help the whole development team make

better software, faster. JBuilder — the #1 development environment for building

any type of Java application: Web, Enterprise, Mobile, and Web Services.

WORK THE WAY YOU WANT.

DEVELOP YOUR JAVA™ APPLICATIONS FASTER.

BUILD IN PERFORMANCE AND QUALITY FROM THE START.

g o . b o r l a n d . c o m / j 1

New JBuilder ® 9

5July 2003www.JavaDevelopersJournal.com

International Advisory Board
AAjjiitt SSaaggaarr (Independent)

AAllaann WWiilllliiaammssoonn (Independent)
BBiillll RRootthh (Sun)

BBllaaiirr WWyymmaann (IBM)
CCaallvviinn AAuussttiinn (Sun)

EErriicc SSttaahhll (BEA)
JJaassoonn BBeellll (Independent)

JJaassoonn BBrriiggggss (Independent)
JJeerreemmyy GGeeeellaann (SYS-CON)

JJooee OOttttiinnggeerr (Independent)
JJoonn SStteevveennss (Apache)

RRiicckkaarrdd ÖÖbbeerrgg (Independent)
JJooee WWiinncchheesstteerr (IBM)
AAaarroonn WWiilllliiaammss (JCP)

Editorial
Editor-in-Chief: AAllaann WWiilllliiaammssoonn
Editorial Director: JJeerreemmyy GGeeeellaann

Executive Editor: NNaannccyy VVaalleennttiinnee
J2EE Editor: JJooee OOttttiinnggeerr

J2ME Editor: GGlleenn CCoorrddrreeyy
J2SE Editor: JJaassoonn BBeellll

Contributing Editor: JJaassoonn RR.. BBrriiggggss
Contributing Editor: AAjjiitt SSaaggaarr

Founding Editor: SSeeaann RRhhooddyy

Production
Production Consultant: JJiimm MMoorrggaann

Associate Art Director: LLoouuiiss FF.. CCuuffffaarrii
Associate Editors: JJaammiiee MMaattuussooww

GGaaiill SScchhuullttzz
JJeeaann CCaassssiiddyy

JJeennnniiffeerr VVaann WWiinncckkeell
Online Editor: LLiinn GGooeettzz

Technical Editor: BBaahhaaddiirr KKaarruuvv,, PPhh..dd..

Writers in This Issue
Lillian Katherine Andres, Jason Bell,

Chris M. Cargado, Glen Cordrey, Peter Curran,
Onno Kluyt, Duane Morin, Joseph Ottinger,

Bill Roth, Mark Roth, M. Valerie Underwood,
Xiaozhong Wang, Alan Williamson, Marcus Zarra

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department subscribe@sys-con.com.
Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)

Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or
Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9600

Java Developer’s Journal (ISSN#1087-6944) is published monthly
(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2003 by SYS-CON Publications, Inc. All rights

reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechan-

ical, including photocopy or any information storage and
retrieval system, without written permission. For promotional

reprints, contact reprint coordinator Carrie Gebert, carrieg@sys-
con.com. SYS-CON Media and SYS-CON Publications, Inc.,

reserve the right to revise, republish and authorize its readers
to use the articles submitted for publication.

Worldwide Newsstamd Distrubution
Curtis Circulation Company, New Milford, NJ

Java and Java-based marks are trademarks or registered trade-
marks of Sun Microsystems, Inc., in the United States and other

countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these

pages are trade names, service marks or trademarks of their
respective companies.

’ve recently returned from the
razzmatazz of the eighth JavaOne
in San Francisco. The 2003 confer-
ence was characterized by a mas-
sive drive back to the developer,
with Sun Microsystems attempt-

ing to win back our hearts and put its
arm around us all in a virtual hug.

Commendable. I fear, however, that
Sun may have forgotten who or what
the developer is.

Take the keynotes, for example.
Usually notable affairs, they set the
tone for the coming year and basically
cheer us up and embolden us to face
the challenges ahead. This year we had
three keynotes, all from Sun execu-
tives, with Scott McNealy saved for the
last day. The conference opened with
Jonathan Schwartz, who just doesn’t
seem to warm to the geek crowd at all.
His keynote on Day One had the
lamest of demos that didn’t impress
the hard-core Java audience who were
waiting (and willing) to be awed.

Sadly, the Rich Green part of Day
Two was equally uninteresting. It was at
the point when “Project Rave” was
unveiled – the tool Sun is counting on
to rival Visual Studio for ease of use and
speed – that Sun seemed to have for-
gotten who their audience is. Green
was enthusing about how Sun wants to
increase the current 3 million Java
developers to 10 million, and explained
how these 7 million new developers
within the Java ecosystem would be
called “Java Corporate Developers” – in
other words, scripters (or, as I heard
one person say, “drag’n’droppers”).

While we all applaud this new move
to increase our developer base, it
needs to be done in such a way so as
not to alienate the current developer
community, or patronize or underval-
ue the existing Java developers in any
way while introducing this new breed
of developer.

Microsoft, with their legions of
Visual Basic developers, has proven
that such a community does indeed
exist and we really do need to reach out
and bring them into the fold somehow.
Whether Project Rave is the vehicle to

bring them in is yet to be seen. Sun,
historically, has not fared too well at
creating developer tools, but obviously
we’ll reserve judgment until we see it.

Fortunately the level of keynotes
picked up immensely the moment
James Gosling took the stage. This was
pure gold and worth the trip. He was
his classic self, drawing out the “geek
streak” that’s deep-rooted in us all.
Gosling took us through a wide range
of different “cool” projects that defi-
nitely make you proud to be in the Java
field.

Scott McNealy ended the confer-
ence with an entertaining and uplifting
talk, especially since he’s eased off the
Microsoft bashing somewhat and let
his own personality come through.
Java has finally arrived and I got the
impression that he was proud at last to
be standing up there stating facts
about Java, as opposed to the overhyp-
ing of previous years.

Sun also unveiled two new Web
sites: www.java.net and www.java.com.
The .com site is specifically for con-
sumers, to enable them to come to
grips with Java and to get the latest
software installed on their machine.
The java.net site is aimed at us, i.e.,
Java (corporate?) developers. It’s a
mishmash of SourceForge, JavaBlogs,
TheServerSide, and JGuru all rolled
into one. It looks good and has the
potential to be very popular, even
though it’s arguably some five years
late in coming!

The question remains, should they
have done it at all? Isn’t it a greater val-
idation of our language to have exter-
nal sites pick up and run with the ball
that Sun failed to carry forward so
many years ago? Sun will need to navi-
gate its way through the next six
months very carefully, very carefully
indeed.

Our community demands and
deserves respect, and it is up to each
and every one of us to make sure Sun
doesn’t sell us short. Sun needs to
innovate and not emulate (Microsoft)
if it is to succeed in growing the devel-
oper space for Java.

Best Laid
Plans...

FROM THE EDITOR

Alan Williamson, when not
answering your e-mails and
working on the next issue of JDJ,
heads up a small team dubbed
the “Thunderbirds of the Java
industry,” providing on- and off-
site rescue for Java projects in
trouble. For more information
visit www.javaSOS.com.
You can also read his blog:
http://alan.blog-city.com.

alan@sys-con.com

Alan Williamson
Editor-in-Chief

J2SE
H

O
M

E
J2E

E
J2M

E

I

avaOne always provides plenty of food
for thought. JavaOne 2003 was no
exception. This year, Alan Williamson,
our beloved editor-in-chief, organized
a “birds-of-a-feather” session for the
JDJ editorial board. This is quite an
auspicious bunch, and this session
provided an opportunity for us to meet
face-to-face for the first time.

The panel started out a bit slowly,
and was initially lightly attended. I sus-
pect this was because it was scheduled
early in the evening by JavaOne stan-
dards, at 9:30 p.m. But after a few
obligatory questions on JDK 1.5 and
the JCP, people began streaming in,
and the questions became a bit more
lively. One of the liveliest topics that
came up was about the Java platform
and open source.

For the record, while I am still
employed at Sun, I am no longer
involved in the day-to-day operations
of the Java platform. I am still involved
in both open source and the Java plat-
form at a personal level. The intersec-
tion of these two topics actually hints
at a fascinating evolution that is occur-
ring.

The tension between open source
and the Java platform is because we
are “in medias res.” This Latin phrase is
used in literature to describe a plot
that starts “in the middle of things”
(the literal translation). We are in the
middle of the plot narrative of nothing
less than the evolution of the nature of
intellectual property rights.

There are two ways to think about
intellectual property (IP) rights. The
first is, for lack of a better phrase, the
old way. This way says that all intellec-
tual property created must be jealously
guarded and carefully licensed, often
for commercial gain. This is a time-
honored legitimate avenue for exercis-
ing your rights. In fact, it was
enshrined in Article I, Section 8, of the

U.S. Constitution, way back in the 18th
century.

There are many (if not all) compa-
nies that have taken full advantage of
this way of thinking about IP rights,
including Sun. These companies have
software and other IP jealously guard-
ed and licensed for commercial gain as
well as protection. “And that,” as Stuart
Smalley says, “is okay.” In a free socie-
ty, it must be possible for someone to
create something, even if it is only an
idea or as ephemeral as software, and
be able to profit from it or protect it.

The second way to think about IP
rights was born in the late ’60s and
’70s. At the AI Lab at MIT, a notion
arose that more could be accom-
plished by sharing your IP. Richard
Stallman developed this into the
CopyLeft and the GNU Public License,
which codified this notion. This philos-
ophy asserts that there will be a faster
pace of innovation if IP, or code, is
shared. It is posited by some that some
code is in fact so crucial to the evolu-
tion of the art/science that it must be
kept “open” forever. There is also proof
that points to the success of this
approach – OpenOffice.org, Mozilla,
and SNORT are key examples.

The conflict between these two
views of IP rights will be with us for a
long time. It must be possible for you
to create something and do what you
want with it, free from intervention
from the government or a third party.
“Do what you want with it” means pro-
tect it or make it freely available. What
this means, in essence, is that the two
ways of thinking about IP rights are
essentially irreconcilable. One can not
be transubstantiated into the other.

And so this tension around open
source will be with us for a long time to
come. And this will be what makes
JavaOne panels interesting for a long
time to come, as well.

In Medias
Res Bill Roth

J

VIEWPOINT

6 July 2003 www.JavaDevelopersJournal.com

President and CEO:
FFuuaatt AA.. KKiirrccaaaallii fuat@sys-con.com

Vice President, Business Development:
GGrriisshhaa DDaavviiddaa grisha@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

CCaarrmmeenn GGoonnzzaalleezz carmen@sys-con.com
Vice President, Sales and Marketing:
MMiilleess SSiillvveerrmmaann miles@sys-con.com

Advertising Sales Director:
RRoobbyynn FFoorrmmaa roybn@sys-con.com

Director, Sales and Marketing:
MMeeggaann RRiinngg megan@sys-con.com

Adverting Sales Manager:
AAlliissaa CCaattaallaannoo alisa@sys-con.com

Associate Sales Managers:
CCaarrrriiee GGeebbeerrtt carrieg@sys-con.com
KKrriissttiinn KKuuhhnnllee kristen@sys-con.com

Editorial
Executive Editor:

NNaannccyy VVaalleennttiinnee nancy@sys-con.com
Associate Editors:

JJaammiiee MMaattuussooww jamie@sys-con.com
GGaaiill SScchhuullttzz gail@sys-con.com
JJeeaann CCaassssiiddyy jean@sys-con.com

JJeennnniiffeerr VVaann WWiinncckkeell jennifer@sys-con.com
Online Editor:

LLiinn GGooeettzz lin@sys-con.com

Production
Production Consultant:

JJiimm MMoorrggaann jim@sys-con.com
Lead Designer:

LLoouuiiss FF.. CCuuffffaarrii louis@sys-con.com
Art Director:

AAlleexx BBootteerroo alex@sys-con.com
Associate Art Director:

RRiicchhaarrdd SSiillvveerrbbeerrgg richards@sys-con.com
Assistant Art Director:

TTaammii BBeeaattttyy tami@sys-con.com

Web Services
Vice President, Information Systems:
RRoobbeerrtt DDiiaammoonndd robert@sys-con.com

Web Designers:
SStteepphheenn KKiillmmuurrrraayy stephen@sys-con.com

CChhrriissttoopphheerr CCrrooccee chris@sys-con.com

Accounting
Accounts Receivable:

KKeerrrrii VVoonn AAcchheenn kerri@sys-con.com
Financial Analyst:

JJooaann LLaaRRoossee joan@sys-con.com
Accounts Payable:

BBeettttyy WWhhiittee betty@sys-con.com

SYS-CON Events
President, SYS-CON Events:

GGrriisshhaa DDaavviiddaa grisha@sys-con.com
Conference Manager:

MMiicchhaaeell LLyynncchh michael@sys-con.com

Customer Relations
Circulation Service Coordinators:

NNiikkii PPaannaaggooppoouullooss niki@sys-con.com
SShheelliiaa DDiicckkeerrssoonn shelia@sys-con.com

JDJ Store Manager:
RRaacchheell MMccGGoouurraann rachel@sys-con.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Bill Roth is a marketing manager
for x86 servers at Sun

Microsystems. He previously
managed product management
and product marketing for J2EE.

br@billroth.net

1.866.228.3781
www.empirix.com

FIVEFIVE FFACTSACTS ABOUTABOUT

WEB WEB APPAPP TESTINGTESTING

OOTHERTHER VENDORSVENDORS

DON’TDON’T WWANTANT YYOUOU TTOO KNOKNOWW..

It’s time to get the facts about Web app testing. See why IDC calls Empirix
“a fast-growing leader in Web testing.”* And learn how to get the same results
as leading e-TEST™ suite customers like US Bank, British Telecom, and Ceridian.

Get your FREE Web App Testing Fact Pack, including:
• 10 Questions To Ask When Comparing Web App Testing Vendors.
• Newport Group Whitepaper: Evaluating Critical

Technology Differences Behind Automated Testing Tools
• Empirix Whitepaper: 25+ Reasons Web Apps Don’t Scale
• Your own trial copy of e-TEST suite software

To get your Fact Pack:
• Call: 1.866.228.3781
• Visit: www.empirix.com/know
• Email: know@empirix.com

10 Questions to
Ask When

Comparing
Web App Testing

Vendors

*Source: IDC Bulletin, The Distributed
Automated Software Quality Tools Market
Forecast and Analysis, 2001-2005, July 2001.

© 2003 Empirix Inc. Empirix and e-TEST suite are trademarks
of Empirix Inc. All other names, products or services are trade-
marks or registered trademarks of their respective companies.

With some Web app testing vendors, the thing to ask yourself isn’t "what are they selling" but "what are they hiding"?
Consider these five facts:

FACT #1: It’s hard to test dynamic, complex Web apps with a tool originally built to test client-server apps.

FACT #2: It’s even more complicated when you have to manually develop test scripts using a proprietary programming language.

FACT #3: Developing separate scripts for functional tests, load tests, and performance monitoring is inefficient and unnecessary.

FACT #4: You don’t have to put up with restrictive licensing agreements, endless training, and expensive consultants.

FACT #5: You can download our free evaluation and test it against your application in the same time it takes to watch their stale demo.

8 July 2003 www.JavaDevelopersJournal.com

n my last editorial (Vol. 8, issue 6), I
argued that we, as an industry, have
too much innovation. We have solu-
tions pouring out our ears, stuff we
often don’t need, yet we use it anyway.
This month, I’d like to clarify that
somewhat: we need more innovation.

The seeds for innovation are already
present: new projects are fertile ground.
The problems are often unique, so the
solutions that present themselves are
individual as well. What’s more, some-
times there’s a better solution that’s
simply waiting for the right viewpoint in
order to become obvious.

New solutions often imply new
technology. Without innovation, we’d
be using batch programs to generate
paper results overnight. Instead, we
had online transactions, the Web, CGI,
then mechanisms to improve even that
in various ways. All are necessary steps
in innovation, and I don’t think we’ve
seen the end of online transactions or
information presentation yet.

To judge whether we need to create a
new solution, we first have to investigate
what already exists. We must be willing to
accept investigation, especially at a local
level, and accept what the results are,
even if they go against what we want. We
may want to create a new invocation
framework; it could be fun to write!
However, the costs in terms of develop-
ment and implementation might not jus-
tify the creation of yet another solution.

Once we’ve accepted that existing
solutions aren’t going to be enough, it’s
time to start thinking about how it
should be done. This is where the cre-
ative juices start flowing, and new ideas
wend their way into the light. This is
where old ways of doing things die out
in a Darwinian survival of the fittest. We
need to be willing to kill bad solutions
in favor of better, more flexible ones.

Java, as a community, needs to be
prepared to do the same – Java itself is
susceptible to being outmoded by new
technology. If we want “Java” to survive
as a name and brand, we must encour-
age innovation and accept honest eval-
uation of its strengths and weaknesses
in the market – official approval in the
form of the JCP isn’t enough to keep
Java alive. The technology that the JCP

puts out needs adherents, adherents in
the real world and not just JSR partici-
pants or yea-sayers.

It’s hard to understate that last point.
The JCP tends to foist new standards on
an industry that’s often watching the
rank and file moving in different direc-
tions. Look at JDO: some companies
were using fairly popular JDO imple-
mentations before the JCP started their
JDO specification, and the resulting
specification ended up invalidating the
prior art, even though the prior imple-
mentations didn’t need as much repair
as the specification might have implied.

Standards are best generated from
what people are using, not from what
people in a boardroom think should be
used. The market moves faster than a
standards document can. The open
source community understands this.
So does Microsoft, who tends to flood
the market with new products if only
to make sure that they’re perceived as
innovators. As a result, you see the
most impressive things from open
source initiatives, which can move
faster than Sun seems to want to. Some
of these will end up working against
Sun’s vision of Java, and that’s all right.

The key is when to innovate and when
not to. Innovation should be spurred by
fresh, clear ideas about how things might
be done better, while acknowledging that
industry momentum isn’t something to
ignore. You shouldn’t be creating another
solution that duplicates the weaknesses of
one that already exists – try to repair the
existing one instead.

Therefore, a larger problem is indi-
cated: How do we learn what solutions
are out there? There are sites like
http://freshmeat.net and others, but
those aren’t enough; they only echo
data that’s pushed to them.

If you’re working on a project, you
should be talking about it, even prema-
turely. Create an RSS feed, and let vari-
ous aggregators like http://technews.n-
ary.com and http://javablogs.com
know about it. Watch these sites and
participate in the overall community as
much as your time permits. Eventually
you learn which way the wind blows,
and how to leverage all that informa-
tion to your benefit.

We Need
More Innovation

I

J2EE INSIGHT

We Need
More Innovation

The seeds for innovation

are already present: new proj-

ects are fertile ground. The prob-

lems are often unique, so the

solutions that present them-

selves are individual as well.

What’s more, sometimes there’s

a better solution that’s simply

waiting for the right viewpoint in

order to become obvious.

JDJ Asks…IBM-Rational
Grady Booch of UML and

Rational fame has answered

readers toughest questions. One

of the original developers of the

Unified Modeling Language

(UML), Grady Booch is recog-

nized internationally for his inno-

vative work on software architec-

ture, modeling, and software

engineering processes.

Joseph Ottinger is a consultant
with Fusion Alliance

(www.fusionalliance.com) and is
a frequent contributor to open
source projects in a number of

capacities. Joe is also the acting
chairman of the JDJ Editorial

Advisory Board.

joeottinger@sys-con.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

8

E
E

10

Joseph Ottinger
J2EE Editor

16JSP 2.0
Technology

Power-packed with unparalleled refactoring
support, super intelligent code editing
and completion assistance, a wide range
of J2EE development features for rapid
Web application and other enterprise
development, a powerful Code Inspection
tool, tight integration with Ant and JUnit,
and a mountain of other productivity
features for Java developers.

IntelliJ IDEA is simply the best Java
development environment available.

IntelliJ IDEA, the integrated development
environment for Java that will boost
your productivity!

There are only 24 hours in a day. Use them
wisely.

Download IDEA 3.0 and experience the
only award-winning Java IDE that provides
the ease-of-use, control and flexibility you
demand, at a price you can afford.

Think you’re using the best tool?

Thinkagain.

Develop with pleasure!

www.intellij.com

10 July 2003 www.JavaDevelopersJournal.com

DJ asked Grady Booch of UML and
Rational fame to answer your toughest
questions. One of the original develop-
ers of the Unified Modeling Language
(UML), Booch is recognized interna-
tionally for his innovative work in soft-
ware architecture, modeling, and soft-
ware engineering processes.

Arun Kumar: The AOP design method is
improving a lot in project development
phases. Can you suggest some methods
for UML testing?
Grady Booch: There’s a testing profile for
the UML underway inside the OMG
but, even now, the current practice is
toward greater visualization in the test-
ing process. From the outside in, this
involves applying use cases and then
their associated behavioral diagrams to
assert a test case; from the inside out
(meaning, in the debugging of a sys-
tem), XDE has facilities to create
sequence diagrams from a running sys-
tem, thus facilitating tracking down
errant behavior, even in a distributed
system.

Sanjay Choudhary: I’m a great fan of yours
and have been reading your books since
1996. My question is: Why do we need
collaboration diagrams? When should
we use them? I always try to convey my
point using the sequence diagram. I
read a couple of books but none gave a
satisfactory answer.
Booch: I tend to use collaboration dia-
grams when it’s important to indicate
the structural relationships among
objects; most of the time, I too use
sequence diagrams, but when there are
structural relationships among the
associated objects, it helps to show
them in collaboration.

James McGovern: As a series editor for a
prestigious publisher, you are aware of
the decline in the technology book mar-
ketplace. What should people be reading
and publishers publishing?
Booch: As I walk down the aisles of
Borders and Barnes & Noble (and the
virtual aisles of Amazon), I notice a

preponderance of books whose half-
life can be measured in weeks or
months, largely because they cover the
same ground that associated product
documentation addresses, albeit in
some cases in a more approachable
fashion. Some of these books are inter-
esting and I certainly respect the labor
that went into all of them, but there
are only a small number of books that
really cut at the fundamentals of
building quality systems. I’m a vora-
cious reader of both books and jour-
nals (and a few Web sites): on the book
front, I always appreciate the classics
(Knuth, Brooks, anything with Parnas
in it); on the journal front I read a vari-
ety of professional and trade journals;
on the Web front, I’m a regular visitor
to Slashdot, ExtremeTech, and
SourceForge.

Nenad Nikolic: What is the current situation
in the field(s) of generating executable
code from UML? To make this question
broader, maybe some scriptable API can
be scripted though a model in UML, or
there is some UML derivative intermedi-
ate language? What does the future look
like? Perhaps there’s some strong
advancement in this regard in a partic-
ular field, e.g., information systems or
maybe network protocol drivers?
Booch: Your question is the very essence
of model-driven development. Today
we know how to generate code from a
variety of structural and behavioral
models from the UML; the current
trend is toward direct executability of
models, with the resulting code being,
in essence, an assembly language that’s
invisible to the developer. The low-
hanging fruit for this space lies in busi-
ness rules, deployment, and schemas,
where products exist that already do so.
As for an intermediate representation, a
lot of what’s gone inside UML 2.0 tight-
ens the underlying semantics and
metamodel, and you’ll see that bear
fruit in tooling soon. EMF (the Eclipse
Modeling Framework: http://dev.
eclipse.org/viewcvs/indextools.cgi/~ch
eckout~/emf-home/main.html) is

another good example of the trajectory
toward richer underlying metamodels
that play with the UML.

George Phillips: What do you think about
Extreme Programming compared to the
more traditional design approach that
you favor? Do you think there’s room for
both in a good developer’s toolkit?
Booch: I’m a founding board member of
the AgileAlliance (www.agilealliance
.org/home); I’m a strong believer in
agile methods. In fact, at Rational,
we’ve worked with Robert Martin’s
company to create an agile plug-in for
the RUP. While I still have concerns
about scale, what strikes me about
agile methods in general is that they
address many of the social dynamics
among team members that amplify
good engineering practice – test-driven
development, pair programming, and
the creation of a stream of executable
releases are all really sound ideas. Kent
Beck and I have publicly debated the
issue, and I’d conclude that the focus
on architecture is the one element that
separates my world view from XP: in
my experience, a focus on architecture
first helps to drive out technical risk,
but only when followed by a regular
stream of executable releases; in Kent’s
world view, architecture is something
that emerges.

Dennis Ceglenski: How does UML develop-
ment process map to the traditional
development process of data modeling,
activities, and the interaction of the
data and activities?
Booch: Let me start not with the process
but with the architecture. In our world
view, the architecture of a system
involves many views that are woven
together. One of these views (the logical
view) addresses, among other things,
the vocabulary of the problem space,
and that in turn involves traditional
schemas; another view (the component
view) addresses the packaging of these
things, such as into databases; the
deployment view addresses the distri-
bution of these physical databases

JDJ Asks…
IBM-Rational
Interview with Grady Booch

J

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Q & A

Download a free trial

now at oracle.com/download.

Sources:
InfoWorld, November 2002
The Middleware Company, September 2002
eWeek, September 2002
IDC, May 2002

oracle.com/experts

or call 1.800.633.1072

Copyright © 2002, Oracle. All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
Reprinted from eWeek, September 2, 2002, with permission. Copyright © 2002 Ziff Davis Media Inc. All rights reserved.

Application Server
Experts Agree

“Oracle: one stop app
server shop.”

“Oracle9iAS is now a formidable
application server.”

“[With Oracle9iAS,] Oracle
is delivering what enterprises
need to build a robust, scalable
ebusiness infrastructure.”

“Enterprises that are seeking a
well-appointed midtier solution
will definitely want to give
Oracle9iAS a test drive.”

12 July 2003 www.JavaDevelopersJournal.com

through the system. From the process
perspective in the RUP, you attack each
of these views in parallel, driven by the
highest risk. In some domains, it’s pos-
sible to defer these traditional data
decisions; in most others, it’s an early
and important part of the evolution
and construction of a system.

Adeeb Khan: A software design validation
tool – like running a Unit test in which
the results are either success or failure –
is there any such tool through which we
can test a design for its scalability, con-
currency control, security, and other
architectural features? If there’s not,
what about the possibility of developing
one, at least to validate some aspects of
software architecture.
Booch: These nonfunctional require-
ments are typically attached to func-
tional use cases, and so through these
use cases you test these elements. As
for performance, I suggest you look at
the work by Lloyd Williams on model-
ing performance with the UML.

Bahram: In USDP what is the best time
to fix a data model with the end user?
What is the maximum iteration that
we can have in medium-scale proj-
ects?
Booch: I have to plead ignorance as to
what USDP is, sorry. As I indicated ear-
lier, though, there’s no “best time”…it
really depends on the business and
technical context, although if you are
risk driven with validation through a
stream of executable releases, you’ll
rarely go wrong. I have to offer a similar
answer to your second question: it real-
ly depends on context, although I’d
advise you to run your process with a
regular rhythm of releases, each
mapped to a set of use cases and each
representing a successive refinement of
the system’s architecture.

Sajan Thomas: I’m not a good OO program-
mer and have more experience with
DBA, data modeling, and conventional
programming. My experience with UML
is in using use cases and some UML
modeling tools to generate diagrams.

One thing I noted in the UML approach
(I’m not sure of the validity of this ques-
tion) is that it differs in relational data
modeling in the representation of the
one-to-many relationship. Is there any
reason? Also, will the philosophy of
UML grow to a level that helps us bring
relational data, OO data, and OO pro-
gramming under one umbrella? I don’t
see a clear way of getting it done using
UML.
Booch: Take a look at the UML User
Guide and you’ll see some examples of
traditional database modeling with the
UML; also, you ought to read Eric
Naiburg’s book UML for Database
Design on the same topic.

David E. Gonzalez: What is your opinion on
the future of UML, Java, XML, or any
other technology. Do you see the possi-
bility of some kind of “grand unifying”
approach to these flexible, portable, and
open technologies? In addition, where
can I find some real-world examples of
UML applications for teaching purpos-
es?
Booch: Well, Java’s not the last language,
although it may be Scott McNealy’s last
language…

The UML has very much entered
the mainstream of development;
model-driven development will drive
the UML even deeper into various parts
of the development process. My per-
sonal opinion is that we won’t see a
purely executable UML, but rather it
will coexist with traditional textual lan-
guages. In the longer term, I’m keeping
my eye on aspect-oriented develop-
ment, which addresses issues of cost-
cutting concerns.

As for teaching resources, Rational
has a university program (SEED),
www.rational.com/corpinfo/college_rel
ations/seed/index.jsp, and you may
find what you’re looking for there.

Joe: What are your thoughts on the use-
fulness and realities of solutions that
claim to automatically take you all the
way from a UML model to a generated
complete Web application solution? Are
they real or pipe dreams?

Booch: For certain well-defined domains
and platforms these things are a reality
(note Rational’s architected rapid appli-
cation development tools). The general
solution, however, is hard, although the
UML 2.0 semantics go a long way to
help make this possible for broader
domains.

Joe: Rational’s UML Resources Site hosts
the 1999 PDF of UML Web Modeling
extensions, and there’s Jim Conallen’s
recently updated book on the subject,
but that appears to be about all I can
find on Web Modeling Extensions (the
1999 PDF says to look at the Rational
UML site for updates, but none can be
found). Are the Web Modeling
Extensions actually useful for real-world
Web modeling? (The book and PDF
appear to be geared more toward MVC1
JSP-based designs than to MVC2 con-
troller-based designs). If you guys think
this stuff is useful for Web application
design, it would be great if you updated
it to reflect where J2EE is going with
MVC2 designs (e.g., Struts-based apps
and so on).
Booch:: I’ll let Jim and our Webmasters
know!

There’s some interesting work going
on in the modeling of Web services
with the UML, by the way.

Brian Wintz: There seems to be an ongoing
battle over development processes –
waterfall is viewed as too heavy and
inflexible whereas agile/Xtreme/iterative
seem to be in vogue. It seems to me that
this often heated debate over which is
the right approach tends to focus more
on personal opinion than on substance.
I’m inclined to believe that each devel-
opment approach has its strengths and
weaknesses – speed to market, quality of
product, and cost to develop. Could you
provide some insight about develop-
ment processes?
Booch: The pendulum swings every now
and then from high-ceremony to low-
ceremony processes. I think the RUP
has the right balance: architecture
first, followed by the iterative and
incremental growth of that architec-
ture through a series of executable
releases. In general, it’s a matter of bal-
ance: those organizations that tend to
favor high-ceremony, waterfallish
processes tend to be afraid of con-
fronting risks and producing exe-
cutable products, and so often hide
behind a process; those who tend to
favor low-ceremony processes tend to
be allergic to control, predictability,
and repeatability.

Q & A
J2

SE
H

O
M

E
J2

E
E

J2
M

E

There’s some interesting
work going on

in the modeling of
Web services with the UML”

“

Take a tour of PerformaSure today:

http://java.quest.com/performasure/jdj

Diagnose and resolve J2EE performance problems
…now in production

© 2003 Quest Software, Inc. Quest, Sitraka, PerformaSure and JProbe are trademarks or registered trademarks of Quest Software, Inc. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries. All other products are trademarks or registered trademarks of their respective companies.

PerformaSure™

Now you can take advantage of PerformaSure’s

exclusive Tag and Follow technology to diagnose and

resolve J2EE performance problems in production. Tag and

Follow traces and reconstructs live end-user transactions across the

JVMs, web/application servers and databases of your distributed J2EE

system. Get to root cause with PerformaSure.

PerformaSure’s new features reduce overhead to rock-bottom levels:

• Ultra low-overhead production-grade agents

• Component-level instrumentation and detail dial

• Automatic sampling and filtering, and more

Part of Quest Central for J2EE – Integrated J2EE application performance management

16 July 2003 www.JavaDevelopersJournal.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

avaServer Pages (JSP) technology originated more than four
years ago as a powerful way to dynamically generate HTML on
the server side. Over time, and with the input of the developer
community, JSP technology has evolved and matured, keeping
simplicity at the forefront. The next generation of JSP technology,
version 2.0, will be released with J2EE 1.4 and represents an easy-
to-use, robust, and extensible technology for building Web appli-
cations, well suited toward generating dynamic Web content in
such formats as HTML, DHTML, XHTML, SVG, and XML.

The JSP 2.0 specification introduces many new features,
including a simple yet flexible integrated expression lan-
guage, an encapsulation mechanism called tag files, a simpli-
fied tag extension API, and a substantially improved XML
syntax. Let’s explore some of these features and see what they
mean for your Web project.

The Evolution of JSP Technology
In its early stages, the focus of JSP technology was to

enable the generation of dynamic content by embedding
scriptlets (pieces of Java programming language code) within
HTML template data. Programming with scriptlets can be
quite flexible and powerful at times and is suitable for some
types of projects. For many projects, however, such as those
that follow a Model/2 or MVC (Model-View-Controller)
architecture, embedding scriptlets in the presentation layer
can have several disadvantages, including:
1. The Web designers on your project need to learn the Java

programming language, which has a fairly steep learning
curve in comparison to, say, the JavaScript programming
language. Furthermore, pages created with JSP technology
(“JSP pages”) with scattered pieces of code can become
difficult to read and maintain.

2. It becomes too easy to mix business logic with presenta-
tion logic, especially when working under a deadline. Even
well-intentioned developers working on well-designed
Web applications may find it tempting to introduce busi-
ness logic in the presentation layer.

3. Code becomes more difficult to reuse. Scriptlets frequently
lead to copying and pasting of code. Tag extensions are
often used to encapsulate and reuse such code. However,
until this release of the specification, writing tag exten-
sions has been a tedious and time-consuming process.

JSP technology has evolved in various ways that help make
writing pages without inline scriptlets much more of a reality.
These evolutions have come in the form of both changes to the
specification and add-on technologies. The introduction of tag

libraries in version 1.1 of the JSP specification allowed for JSP
technology to be extended, and MVC frameworks like Struts
began to evolve, providing a simple way to abstract business
logic from the presentation layer. After improvements to tag
library support in version 1.2 of the JSP specification, the JSP
Standard Tag Library (JSTL) was introduced, providing a core set
of useful actions such as iteration, internationalization, format-
ting, SQL database access, and XML manipulation. JSTL also
introduced an expression language that’s much easier to read
and write than scriptlets. Over time, these incremental changes
have helped JSP technology become quite suitable for architec-
tures in which it is used purely as a presentation layer, while
maintaining strong support for other architectures as well.

The latest JSP specification is currently in the Proposed
Final Draft stage and it’s under development in the Java
Community Process (JCP) as Java Specification Request (JSR)
152. In combination with JSTL, the features introduced in the
JSP 2.0 specification yield a cleaner, easier-to-use, and high-
er-performing language. In fact, page authors using JSP 2.0
technology no longer need to know or use the Java program-
ming language, which in and of itself dramatically decreases
their training requirements. Furthermore, the introduction of
features like tag files and simple tag extensions enable new
reuse patterns and make life easier for tag library developers.

JSP 2.0 technology is expected to have a substantial
impact on the way page authors can write JSP pages. Because
of this, the expert group decided to upgrade the major ver-
sion number of the specification. Among other benefits,
upgrading the major version number helps differentiate
between developing using JSP 1.x technology (with scriptlets)
and developing using JSP 2.x technology (with simple expres-
sions and JSTL). It’s important to note that though major ver-
sion number upgrades often connote a break in backward
compatibility, this is not the case here. Version 2.0 of the JSP
specification is fully backward compatible with version 1.2.

Simple Expression Language
The JSTL 1.0 specification included a simple expression

language, intended to help reduce the amount of scriptlets in
a page, and to make it much easier for a page author to
access application data from within a JSP page. JSTL’s expres-
sion language was originally called SPEL (Simplest Possible
Expression Language), and is intentionally very similar in
syntax to ECMAScript (JavaScript) and XPath. By popular
demand from the community, this simple expression lan-
guage is now built into the JSP 2.0 specification.

J

18 July 2003 www.JavaDevelopersJournal.com

To understand the motivation for the expression lan-
guage, let’s look at a simple example. Suppose you’re a page
author writing a JSP page that outputs census data for a
given state. The part of your JSP page that outputs the result
might look like:

The population of <%= state.getFullName() %> in 2000 was

<%

StateInfo info = (StateInfo)stateInfo.get(state.getId());

if(info != null) {

%>

<%= info.getPopulation(); %>

<%

}

%>

Writing even a fairly simple example like this requires
some knowledge about the Java programming language syn-
tax, types, variable declarations, and the danger of derefer-
encing a null pointer. This can be intimidating and easy to
get wrong for a page author with a limited knowledge of the
Java programming language.

Using the simple expression language available in the JSP
2.0 specification, the same presentation logic can be written
much more concisely:

The population of ${state.fullName} in 2000 was

${stateInfo[state.id].population}.

Here’s how it works. The expression ${state.fullName} looks
up the state attribute, treats it as a JavaBeans component, and
calls the accessor for the fullName property (i.e.,
getFullName()). The expression ${stateInfo[state.id].popula-
tion} looks up the stateInfo attribute, which in this case hap-
pens to be a HashMap; finds the entry with the key that match-
es the value of state.getId(); and then calls getPopulation() on

the resulting entry. Incidentally, the EL behaves in similar
ways for maps, lists, and arrays, so there’s some degree

of transparency in terms of how stateInfo is actually
implemented. Another nice feature of the JSTL

expression language is if a null value is encoun-
tered at any point, the expression language will

handle it gracefully and output nothing rather than
throwing a NullPointerException that would have pro-

duced an error page instead. Of course, the page author
doesn’t need to know what happens behind the scenes.

Clearly, the resulting code is more readable and easier to
maintain.

Using the JSP 1.2 and JSTL 1.0 technologies, the page
author could use these simple expressions only inside the
attributes of JSTL actions. JSP 2.0 technology allows page
authors to finally use these expressions (now termed “EL
expressions”) directly within template text, and when passing
attribute values to standard actions and tag handlers created
with JSP technology (“JSP tag handlers”). That means they
can be used with any tag library, even your own, with no
extra work required by the tag library developer.

With the power of an integrated expression language, and
with the core JSTL actions at hand, a new programming method-

ology is now available to JSP page authors, making scriptlets a
thing of the past and dramatically reducing the learning curve
associated with JSP technology. In fact, to help project leads
enforce a no-scriptlets policy project-wide or in a specific set of
pages, the JSP 2.0 specification now includes a global configura-
tion mechanism to disallow scriptlets for a set of JSP pages in a
Web application (among other global configuration options not
discussed in this article). This was a popular feature request from
project leads who were struggling to prevent developers from
mixing business logic with presentation logic, especially under
time pressure. Listing 1 illustrates a deployment descriptor con-
figured to disable the use of scriptlets for all JSP pages in the
/client subdirectory of the Web application. Of course, for some
projects scriptlets will still make sense, and the JSP 2.0 specifica-
tion supports those types of projects as well.

Writing a New EL Function
Along with a fairly complete set of operators, the expres-

sion language in the JSP 2.0 specification has built-in capa-
bilities to access data from maps, lists, arrays of objects, and
bean properties. The expression language is designed from
the ground up to be intuitive to use and easy to read.

A key decision was made by the expert group to disallow
unrestricted invocations on Java methods from within EL
expressions. Allowing this could quickly lead to pages that
mix business logic with presentation logic, leading to many
of the same problems described earlier that existed with
scriptlets. As always, the expert group will be observing how
people use JSP 2.0 technology to see if it makes sense to
loosen this restriction.

To provide a way to add to the power and flexibility of the
expression language in a more controlled manner, JSP 2.0
technology adds the ability to extend the expression lan-
guage through writing custom EL functions. This feature
enables a developer to quickly and easily make common
tasks available to the page author without having to allow
unrestricted access to arbitrary method invocations.

The following code snippet shows a page that invokes an
EL function that returns a random number between one and
six. The function is imported as part of a tag library (tag

libraries can contain both actions and functions) and the
function is identified using the prefix of that tag library.

<%@ taglib prefix="my" uri="http://acme.com/mytaglib" %>

Congratulations, you rolled a ${my:randomNumber(1, 6)}!

Writing the implementation of the randomNumber func-
tion is quite straightforward. First, the developer writes a
public static method:

/* /WEB-INF/classes/mytaglib/Functions.java */

package mytaglib;

public class Functions {

public static int randomNumberImpl(int low, int high) {

return (int)(Math.random() * (high-low+1) + low);

}

}

J2
SE

H
O

M
E

J2
E

E
J2

M
E

“JSP 2.0 technology adds the ability to extend the
expression language through writing custom EL functions”

20 July 2003 www.JavaDevelopersJournal.com

The static method can be in any class, and a class can
implement more than one EL function.

After the implementation is written, simply add an entry
to the tag library descriptor as shown in Listing 2. Now you
can use the EL function in any of your JSP pages.

The JSTL 1.1 specification, which will be finalized at the
same time as the JSP 2.0 specification, will introduce 16 stan-
dardized EL functions, covering common page author needs:
• fn:length(): Get the length of a collection or a string.
• fn:toUpperCase(), fn:toLowerCase(): Change the capital-

ization of a string.
• fn:substring(), fn:substringBefore(), fn:substringAfter(): Get

a subset of a string.
• fn:trim(): Trim whitespace from a string.
• fn:replace(): Replace characters in a string.
• fn:indexOf(), fn:startsWith(), fn:endsWith(), fn:contains(),

fn:containsIgnoreCase(): Check if a string contains anoth-
er string.

• fn:split(): Split a string into an array.
• fn:join(): Join a collection into a string.
• fn:escapeXml(): Escape XML characters in a string.

Incidentally, the tag libraries in JSTL 1.1 have new URIs
(for example, http://java.sun.com/jsp/jstl/core instead of the
JSTL 1.0 equivalent http://java.sun.com/jstl/core_rt). The
new JSTL 1.1 tag libraries accept request-time expressions for
their attributes, and delegate to the JSP container to evaluate
EL expressions. When creating a new JSP 2.0 application, you
should always either (in order of preference, from highest to
lowest):
• Use JSTL 1.1
• Use the _rt versions of the JSTL 1.0 tag libraries
• Use the non-rt versions with isELIgnored="true" in the

page directive

Tag Files
There are a number of ways to encapsulate reusable por-

tions of JSP software. Since version 1.1 of the JSP specifica-
tion, there have been four reuse mechanisms: the include
directive, the include standard action, the forward standard
action, and the custom action.

Of the four, the custom action is the most flexible and
powerful reuse mechanism and it has the most readable call-
ing syntax. Custom actions are grouped into tag libraries,
which are imported by the page author via a taglib directive.
The action is then invoked by inserting a simple XML ele-
ment. See Listing 3 for an example invocation of a custom
action that retrieves products from the user’s shopping cart
and places them in the “products” variable.

Until version 2.0 of the JSP specification, custom actions
could only be implemented using the Java programming lan-
guage. In version 1.2, the amount of code and configuration

required to write custom actions made them typically only
worthwhile for complex tasks. The JSP 2.0 specification intro-
duces a new reuse mechanism called a tag file that allows
custom actions to be written using JSP technology syntax
(“JSP syntax”). This brings the power and flexibility of custom
actions to page authors that don’t necessarily know the Java
programming language.

In Listing 3, the <my:queryCart> custom action is used to
retrieve a list of products in a shopping cart and place the list
in the “products” variable. Some HTML and JSTL code is
then used to render the shopping cart in a table. It would be
nice to be able to reuse the presentation code that renders
the table as well, so that whenever we need to display the
user’s cart within a JSP page, all we would have to do is type
something like <my:showCart />. The cart would be queried
and rendered in a single step.

To do this, we could write our own custom action using
the Java programming language, but in doing so we would
run into some limitations. First, because custom actions are
not designed to be invoked from within other custom
actions, there would be no convenient way to reuse the exist-
ing <my:queryCart> custom action. Second, the purpose of
the new <my:showCart> custom action is primarily presenta-
tion focused. The implementation would contain many
out.println() statements to render the HTML. This is more
difficult to read and maintain for the same reasons that
servlets that mostly output HTML are more difficult to read
and maintain than JSP pages that do the same.

Tag files are the perfect solution to this situation. At its
surface, a tag file is simply an easy way to write a custom
action. Just as JSP pages are compiled into servlets, tag files
are compiled into custom actions. Using a tag file, we can
easily construct a custom action that queries the cart and
renders the result. Listing 4 is an example of a tag file that
does just that.

You’ll notice the code for the tag file looks almost identi-
cal to the code for the JSP page in Listing 3. One addition is
the use of the attribute directive that allows us to specify that
this custom action accepts an attribute with the name of
“username”. The value of the username attribute is then
available to the tag using the EL expression ${username}.

The beauty of tag files is that all we need to do now is save
this file in /WEB-INF/tags/showCart.tag in our Web applica-
tion, and we now have a new custom action. Unlike when
implementing custom actions using the Java programming
language, we don’t need to write a tag library descriptor
(TLD), and we don’t need to manually compile our source
code into a tag handler. Also note how easy it is to alter the
presentation of the shopping cart versus what it would take
to do the same if it were implemented using Java class files.

The following code makes use of our new custom action:

<%@ taglib prefix="tags" tagdir="/WEB-INF/tags" %>

Here are the contents of your shopping cart:

<tags:showCart username="${username}" />

From the caller’s perspective it’s fairly transparent
whether the action was implemented using a tag file or a Java
class file. The only hint is the use of the tagdir attribute,
which can be replaced with uri if we take the extra time to
write an explicit TLD file for this tag.

If page authors find themselves frequently copying and
pasting a portion of code written in JSP or HTML syntax, per-
haps with small changes each time, that portion of code can
be placed in a tag file, parameterized, and then reused with
minimal effort. Tag files are also a good way to move

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Figure 1 Tag extension class hierarchy

22 July 2003 www.JavaDevelopersJournal.com

scriptlets out of your JSP pages and into a more well-defined,
encapsulated place.

Of course, not all actions are best implemented as tag
files. Tags that are dominated by scriptlets or logic are proba-
bly better compiled by hand into Java class files.

Simple Tag Extensions
Writing a JSP 1.2 tag handler using the Java program-

ming language requires a number of tricky steps including
choosing from three possible interfaces to implement;
implementing the doStartTag(), doInitBody(),
doAfterBody(), and doEndTag() methods; picking return
values for each method to affect the way the container eval-
uates the tag body and the rest of the page; and carefully
checking the implementation against a complex reuse life
cycle. Even some JSP technology experts have trouble get-
ting all these steps right.

Listing 5 shows an implementation of a JSP 1.2 tag han-
dler that repeats the contents of its body a given number of
times. Note how what should be a simple loop is spread
across two separate methods and how the value of the count
attribute is not allowed to be modified by the tag handler
implementation so that the tag handler instance may be
reused by the container.

JSP 2.0 technology makes writing tag handlers in the Java
programming language easier by providing a much simpler
tag handler API. The new API is called the simple tag exten-
sion API, and JSP 1.2 tag handlers are now referred to as clas-
sic tag handlers. Figure 1 illustrates the new tag extension
class hierarchy.

When writing a simple tag handler, a tag library developer
needs only to extend SimpleTagSupport and implement the
doTag() method. Simple tag handlers flow more naturally
and are thus easier to write, debug, read, and maintain. The
one disadvantage of simple tag handlers is that scriptlets are
not allowed in the bodies of these tags. Though some would
consider this an advantage, it does mean that simple tag
handlers cannot be used for some applications. The tag body
is encapsulated in an object called a fragment, which is
passed to the tag handler and invoked as many times as
needed. Listing 6 shows an implementation of the same
repeat action as a simple tag handler.

Tag files are actually translated into simple tag handlers
by the container and therefore have many similar properties
(for example, scriptlets are not allowed in the body of a tag
file invocation either). The following code shows an imple-
mentation of the repeat action using a tag file. This is actually
the most convenient implementation of the three since it
does not require writing a TLD or compiling any classes.

/%-- /WEB-INF/tags/repeat.tag --%/

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ attribute name="count" rtexprvalue="true" required="true" %>

<c:forEach begin="1" end="${count}">

<jsp:doBody />

</c:forEach>

We’re Listening!
This was just a quick overview of some of the more signif-

icant features new to the JSP 2.0 specification. There are
many other features that were not touched on in this article,
including:
• Greatly improved XML syntax: Provides a natural fit for

pages that are provided in XML syntax or that generate

XML content.
• Configuration: Allows central control over various proper-

ties of JSP pages from within the deployment descriptor.
• Portable debugging support through JSR-45: Enables the

freedom to mix and match IDEs and application servers
from different vendors, for those that support this stan-
dard.

• Dynamic attributes: Enables tag extensions to process an
open-ended set of attributes.

• Enhanced I18N support: Allows specification of page
encoding on a per-file basis, among other long-awaited
enhancements.

• Fragment attributes: Effectively allows a single tag exten-
sion to accept multiple tag bodies.

The new features in the JSP 2.0 specification, when used
with other Java technologies like the JSTL tag library, bring
power with simplicity to all users of JSP technology, from the
basic page author who no longer needs to learn the Java pro-
gramming language to the advanced tag library developer
who can now write powerful tag handlers with much less
overhead.

The expert group created the new features in the JSP 2.0
specification directly from input received from the Java
technology developer community at large – from people
like you. Download the JSP 2.0 specification and an imple-
mentation like J2EE 1.4 SDK Beta 2 (which is based on
Tomcat 5) and try these features out for yourself. Aside from
support for the JSP 2.0 and Servlet 2.4 specifications,
Tomcat 5 has several enhancements over Tomcat 4.0
including improved performance and a rewritten code gen-
erator that overcomes the 64K method size limitation,
among other things.

Your feedback has already made, and continues to make,
a big difference!

Resources
Implementations
• J2EE 1.4 SDK Beta 2: http://java.sun.com/j2ee/1.4/down-

load-beta2.html
• Java Web Services Developer Pack:

http://java.sun.com/webservices/
• Tomcat 5: http://java.sun.com/products/jsp/tomcat/
• Jakarta Taglibs project: http://jakarta.apache.org/taglibs/
• TLDDoc (JSP Tag Library Documentation Generator):

http://developers.sun.com/dev/coolstuff/tlddoc/

Information
• JSP 2.0 tutorial: http://java.sun.com/j2ee/1.4/docs/tutori-

al/
• JSP 2.0 specification: http://jcp.org/en/jsr/detail?id=152
• JSP: http://java.sun.com/products/jsp/
• JSTL: http://java.sun.com/products/jsp/jstl/
• JavaServer Faces Technology:

http://java.sun.com/j2ee/javaserverfaces/

Community
• java.net Web Applications: http://java.net/

Acknowledgments
Special thanks to Eduardo Pelegri-Llopart, Pierre Delisle,

Stephanie Bodoff, and Jan Luehe, whose feedback helped me
improve this article.

Java, JavaBeans, JavaScript, JSP and JCP are trademarks or registered trademarks of Sun Microsystems,

Inc., in the United States and other countries.

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Mark Roth is a member of the
Java 2 Platform, Enterprise

Edition technology team. He has
contributed to a number of key
specifications and implementa-
tions and is currently a co-lead

for the JavaServer Pages specifi-
cation version 2.0.

mark.roth@sun.com

24 July 2003 www.JavaDevelopersJournal.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Listing 1 Using JSP configuration to disable scriptlets

<!-- /WEB-INF/web.xml -->

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee web-app_2_4.xsd"
version="2.4">

<jsp-config>
<jsp-property-group>

<url-pattern>/client/*.jsp</url-pattern>
<scripting-invalid>true</scripting-invalid>

</jsp-property-group>
</jsp-config>

</web-app>

Listing 2 Defining a new EL function

<!-- /WEB-INF/tlds/mytaglib.tld -->
...
<function>

<description>
Returns a random number in the provided range.

</description>
<name>randomNumber</name>
<function-class>mytaglib.Functions</function-class>
<function-signature>

int randomNumber(int, int)
</function-signature>
<example>

my:randomNumber(1, 10)
</example>

</function>
...

Listing 3 JSP Page to display a shopping cart

<%@ taglib prefix="my" uri="http://acme.com/mytaglib" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

Here are the contents of your shopping cart:

<my:queryCart var="products" user="${username}" />

<table>
<c:forEach var="product" items="${products}">

<tr>
<td>${product.name}</td>
<td>${product.price}</td>

</tr>
</c:forEach>

</table>

Listing 4 Tag files encapsulate reusable JSP code

<%-- /WEB-INF/tags/showCart.tag --%>
<%@ attribute name="username" rtexprvalue="true" %>
<%@ taglib prefix="my" uri="http://acme.com/mytaglib" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core %>

<my:queryCart var="products" user="${username}" />

<table>
<c:forEach var="product" items="${products}">

<tr>
<td>${product.name}</td>
<td>${product.price}</td>

</tr>

</c:forEach>
</table>

Listing 5 Repeat Action implemented as a “classic tag handler”

/* /WEB-INF/classes/mytaglib/RepeatClassicTag.java */
package mytaglib;

import javax.servlet.jsp.tagext.BodyTagSupport;

public class RepeatClassicTag
extends BodyTagSupport

{
private int count;
private int timesRemaining;

public int doStartTag() {
this.timesRemaining = count;
return EVAL_BODY_INCLUDE;

}

public int doAfterBody() {
int result = EVAL_BODY_AGAIN;
this.timesRemaining--;

if(this.timesRemaining == 0) {
result = SKIP_BODY;

}

return result;
}

public void setCount(int count) {
this.count = count;

}

public int getCount() {
return this.count;

}
}

Listing 6 Repeat Action implemented as a “simple tag handler”

/* /WEB-INF/classes/mytaglib/RepeatSimpleTag.java */
package mytaglib;

import java.io.IOException;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.SimpleTagSupport;

public class RepeatSimpleTag
extends SimpleTagSupport

{
private int count;

public void doTag()
throws IOException, JspException

{
for(int i = 0; i < count; i++) {

getJspBody().invoke(null);
}

}

public void setCount(int count) {
this.count = count;

}

public int getCount() {
return this.count;

}
}

28 July 2003 www.JavaDevelopersJournal.com

2SE is going through a bit of an over-
haul at the moment, with the release of
J2SDK 1.5 (project name “Tiger”) due
at the end of 2003. Sun Microsystems
ran a feature article in May about this
release that included a Q&A with
Joshua Bloch, a senior staff engineer at
Sun (http://java.sun.com/fea
tures/2003/05/bloch_qa.html). 1.5
contains enhancements that enable
developers to create simple robust
code. The impact on legacy code has
been kept to a minimum. Well, I hope
so; at least that’s the way I read it.

I use Generics on a daily basis and
find it an interesting issue, especially
when dealing with RSS/RDF data items
(and trust me I see a lot of RSS data).

• Old style:

List myList = new ArrayList();

• New style:

List myList<String> = new ArrayList<String>();

Now is that funky or what? Do you
see the benefits? First, it solves most of
those annoying casting problems; no
longer do we mere mortals have to suf-
fer typing:

Iterator i = myList.iterator();

while(i.hasNext(){

String thing = (String)myList.next();

}

Now we can save ourselves from
typing eight characters. Which, from
my point of view, is 80 characters a
day, multiply that by a year (I work
hard), that’s 29,200 typing actions
saved. Depending on your half-
empty/half-full perspectives, you
could either be keeping RSI at bay or
losing on productivity.

With Generics in 1.5 the errors are
caught at compile time, not at runtime.
In theory most of the ClassCast-
Exceptions will be eliminated. Sounds
like a good deal to me. The jury is still

out on whether anyone will go back
and change every casting from a col-
lection, but that remains to be seen.

I won’t go into the enhanced for
loop, autoboxing, or avoiding the cre-
ation of boilerplate coding with meta-
data. The best thing you can do is read
Sun’s J2SE 1.5 article, while I readjust
my cynicism chip to full.

Here we go: Will the 1.5 SDK be
available across all OS types? Now I use
Windows, Debian Linux, and FreeBSD
in a commercial setting so I need a sta-
ble SDK across all of these. As for the
rest of the world, there’s still all the
other Linux releases, Solaris (I think
Sun will have that one covered), and
Mac OS X. I’m always wary of new SDK
releases as they take time to be accept-
ed, and then you have to think about
the developer catch up. Is everyone
now using NIO and Regular
Expressions these days? I don’t think
so, judging by the amount of queries I
see in mailing lists and other develop-
er/student help channels.

Developer releases are great – they
evolve, invigorate, and charge the
head, the hands, and the heart to code
like you’ve never coded before. The
question you have to ask is: “Is this
release really going to impact the busi-
ness that I work in?” How is it going to
increase productivity? How much
retraining will be required? How many
more books will I have to buy on the
Java language? The ultimate question
is: What is the cost benefit?

J2SE 1.5 could be a sleeping Tiger
for a good 12 months unless the hearts
and minds of Java programmers are
refreshed in the things they do. I’m
excited about it, but other developers
don’t always think the same way I do.
Sun needs to work hard at serving the
community across operating systems.
Now I can appreciate that there are
always manpower constraints, but a
proper roll out has to be maintained. I
want to use 1.5 across the OSs I use,
but may not be able to do so for a little
while yet.

Sleeping
Tigers

J

J2SE INSIGHT

Sleeping Tigers

J2SE is going through a bit

of an overhaul at the moment,

with the release of J2SDK 1.5

(project name “Tiger”) due at

the end of 2003. The question

you have to ask is: Is this release

really going to impact the busi-

ness that I work in? And the ulti-

mate question is: What is the

cost benefit?

Trimming the Fat from

Swing

I’m sure we’ve all heard it

before: Java on the client is slow;

Swing is slow. The reality is that

Sun has made great progress in

increasing the speed of Swing

and Java on the client. However,

it’s up to developers to demon-

strate that Java has indeed

improved to the point of usabili-

ty and viability on the client.

Jason Bell is the senior program-
mer for a B2B portal. He’s also a

keen supporter of people read-
ing the API docs before asking

questions. In his spare time he’s
involved with building RSS devel-

opment tools.

jasonbell@sys-con.com

28

SE

30

Jason Bell
J2SE Editor

J2
SE

H
O

M
E

J2
E

E
J2

M
E

36Avoid
Bothersome

Garbage
Collection Pauses

From development to deployment, Kenetiks

shows you how to build J2EE applications for

WebSphere Application Server and WebSphere Portal Server

using WebSphere Studio Application Developer.

© 2003, KENETIKS, INC. IBM AND WEBSPHERE ARE TRADEMARKS OR REGISTERED TRADEMARKS OF INTERNATIONAL BUSINESS MACHINES CORPORATION. JAVA
AND ALL JAVA-BASED MARKS ARE TRADEMARKS OR REGISTERED TRADEMARKS OF SUN MICROSYSTEMS, INC. IN THE UNITED STATES AND OTHER COUNTRIES.
OTHER COMPANY, PRODUCT AND SERVICE NAMES MAY BE TRADEMARKS OR SERVICE MARKS OF OTHERS.

TAKE THE
LEAD

• WEBSPHERE
TRAINING

• PROJECT
MENTORING

• COURSE
LEASING

www.kenetiks.com
888.KENETIKS

30 July 2003 www.JavaDevelopersJournal.com

’m sure we’ve all heard it before: Java on
the client is slow; Swing is slow. The
reality is that Sun has made great
progress in increasing the speed of
Swing and Java on the client.

However, it’s up to developers to
demonstrate that Java has indeed
improved to the point of usability and
viability on the client.

To do this, the code needs to be very
lean and clean. One of the original
problems with GUI creation was the
reliance upon Visual Development
Tools to design and code the GUI.
While these VDTs have come a long
way in the last few years, I have found
that many developers rely so heavily on
the VDTs that they’ve gotten lazy when
it comes to coding the actual function-
ality of the application.

The Problem
Methods are expensive in terms of

execution time. The more method calls
made, the slower the application will
be. However, there needs to be a bal-
ance between speed of execution and
good coding standards.

Swing makes a large number of
method calls during its startup and
execution. This is a price that has to be
paid for its design model. What com-
pounds the method calls that Swing
requires is the number of method calls
the average developer piles on top of
Swing.

Multithreading Swing
The Swing API is considered to be

single threaded and thread “unsafe.”
However, for a Swing GUI to be respon-
sive, some actions must be threaded,
such as database access.

In a normal GUI construction, if a
call to a database is made, the GUI will
just sit there waiting for the database
access to return. Not only will the GUI
be unresponsive, it won’t even repaint!
This can cause the user to believe the
application has locked up or failed in
some way. This problem is not unique
to Java. Every GUI API has to deal with
this same issue in some fashion. It’s

unfortunate that many Java Swing
developers don’t handle this type of sit-
uation properly.

Steve Wilson of Sun Microsystems is
quoted as saying that in any situation
where it’s known that the process is
going to take a long time, a GUI should
respond to the user in some fashion
within 50 milliseconds. Any slower than
this and it will feel sluggish. Naturally a
database request is not going to return
in 50 milliseconds or less! This is where
multithreading comes into play. The
problem lies in properly threading your
Swing GUI application to avoid compli-
cations with Swing’s single-threaded
nature.

The solution to this problem lies
within two methods: invokeLater and
invokeAndWait. These two methods
were originally in the SwingUtilities
class but, as of v1.2, they’ve been
moved to the java.awt.EventQueue
class. Applications can still call these
methods in the SwingUtilities class but
are merely wrappers for the java.awt
methods.

Listing 1 demonstrates database
access being spun off into a separate
thread. (Listings 1–4 can be down-
loaded from www.sys-con.com/
java/sourcec.cfm.) The method that’s
called is invokeAndWait, which means
the worker thread is blocked until the
database activity returns. However,
the GUI’s thread is not blocked and
will allow repaints, and more. Note:
This is a very primitive example
designed to only show the multi-
threading.

Once the database call has returned,
it’s time to update the GUI. Since this is
still in a separate thread, it won’t modi-
fy the GUI directly. Thus, in Listing 1,
all the GUI updating is in a call to the
invokeLater method. This method
doesn’t block the worker thread that
allows it to terminate peacefully. The
work to update the GUI has been
placed into the event queue, and once
it reaches the top of the heap, the GUI
will be updated. This allows the update
to the GUI to happen from a thread

outside the event thread without caus-
ing problems.

Model, View, Control
Example 1: JTable

The cleanest way to solve this prob-
lem is to write Swing code by hand as it
provides two clear benefits:
1. The code will be very lean and clean.
2. The code will be much easier to

maintain since there will be fewer
method calls in the code.

For example, consider a simple
JFrame with a few buttons and a table
on it. Any complex GUI will generally
be using GridBagLayout as its layout
manager, therefore this example will be
using GBL as the layout manager.
Hopefully, through this example, you’ll
see a reduction in the lines of code,
enabling you to write cleaner, tighter,
and better performing GUI code.

Listing 2 shows an example GUI
built using JBuilder’s VDT. I’ll admit I
was very impressed at how compact
the code was that JBuilder produced.
There’s very little improvement that can
be done at this point. However, looking
at Listing 3, you can see that we were
able to remove a few method calls. The
calls to setText() have been moved into
the constructor calls for the buttons.
The other change we can see at this
point is excess construction of
GridBagConstraints objects. This is
excessive due to what the
GridBagLayout does with these objects.

When the GridBagConstraints is
passed into the GridBagLayout, the first
thing that’s done is it’s cloned. The
GridBagLayout does this so that the
GridBagConstraints doesn’t change on
it unexpectedly. Thus, the individual
creation of GridBagConstraints here is
unnecessary. This is why, in Listing 4,
there’s only one GridBagConstraints
and it’s modified for each call to the
JPanel’s add method.

Both of these changes are relatively
minor and won’t improve the perform-
ance all that noticeably. However, this
is where the VDT stops and the devel-

Trimming the
Fat from Swing
Improve performance

Marcus S. Zarra

I

GRAPHICAL API

J2
SE

H
O

M
E

J2
E

E
J2

M
E

32 July 2003 www.JavaDevelopersJournal.com

oper takes over.
It’s very common for a developer to

utilize the shortcuts in the creation of a
JTable to populate it for data. While
these shorten the development cycle
slightly, they’ll cost a fortune in per-
formance. Instead, the creation of an
actual table model that’s customized
for a specific use will improve perfor-
mance. By implementing your own
TableModel, you can reduce the num-
ber of method calls and object cre-
ations that are normally incurred when
using the default models.

For example, take a JTable created
with the (Vector, Vector) constructor.
The only way you can access that data
programmatically is via those vectors.

However, the GUI doesn’t know if any-
thing has changed inside those vectors
and therefore needs to be informed of
the change so the GUI can repaint
itself. However, if a custom TableModel
object is created that’s specifically
designed to handle the data you wish to
represent, you’re able to add methods
directly to the model that will allow you
to edit the data and then fire off an
event that the View will intercept and
handle. This eliminates a large number
of method calls and indirection in your
code and indirectly increases the per-
formance of your GUI overall.

Listing 4 is an example TableModel
implementing the various methods that
are required. Notice that the example

extends from the
AbstractTableModel. There
are a few nonrequired meth-
ods in the
AbstractTableModel that are
useful and don’t need to be
replaced. This allows the
AbstractTableModel to han-
dle the listeners and deal
with delivering the events
that you create. This leaves
us with the methods shown

in Table 1.
Our example is fairly simple but it

gives you an idea of how you could
construct a TableModel specifically tai-
lored to the data it will be representing.
It’s a rare situation indeed where you
will need to display completely dynam-
ic data.

Example 2: JTree
Another area of performance con-

tention is the JTree API. In a large num-
ber of cases where I’ve seen the JTree
used in a production environment, it’s
invariably used incorrectly, causing the
number of objects involved with it to
double.

The JTree API is designed around
the concept of nodes; each point in the
tree is either a branch or a leaf. Every
point in the JTree implements the
TreeNode interface. This interface
defines methods inside it that tell the
View whether or not that particular
node is a leaf or a branch.

What happens is that developers
tend to use (read overuse) the
DefaultMutableTreeNode class instead
of developing their own TreeNodes.
This produces a “wrapper” class around

GRAPHICAL API
J2

SE
H

O
M

E
J2

E
E

J2
M

E

Table 1

ggeettCCoolluummnnCCllaassss((iinntt ccoolluummnnIInnddeexx)) Every object in a particular col-
umn needs to be of the same class. In
our example, we merely grab the first
row and return the getClass() of the
object in this column.

ggeettCCoolluummnnCCoouunntt(()) In the example, we know how
many columns of data we’re going to
have so we have the column count
hard coded to avoid unnecessary
method calls.

ggeettCCoolluummnnNNaammee((iinntt ccoolluummnnIInnddeexx)) Again we know how many
columns we have so we have the col-
umn names hard coded in a string
array and merely return the correct
index.

ggeettRRoowwCCoouunntt(()) Our data is all contained within
one Vector inside the model, so we
merely have to return the size of the
Vector.

ggeettVVaalluueeAAtt((iinntt rroowwIInnddeexx,, iinntt
ccoolluummnnIInnddeexx))

We know which data objects
we’ll be containing as well as which
pieces of data are going into which
columns. Therefore once we have
retrieved the correct row of data (ele-
ment in the Vector), we fall into a
switch statement to call the correct
getter method on the object.

iissCCeellllEEddiittaabbllee((iinntt rroowwIInnddeexx,, iinntt
ccoolluummnnIInnddeexx))

Returns a boolean value letting
the GUI know whether or not this cell
can be edited by the user. This does-
n’t stop you from altering the data
programmatically.

sseettVVaalluueeAAtt((OObbjjeecctt aaVVaalluuee,, iinntt
rroowwIInnddeexx,, iinntt ccoolluummnnIInnddeexx))

This method does not need to be
overloaded. If your table does not
allow editing to be done, you can skip
this method.

Table 2

cchhiillddrreenn(()) This method returns an enumera-
tion of the children that this node
has. If this node is a leaf, it returns
null.

ggeettAAlllloowwssCChhiillddrreenn(()) Returns a boolean whether this
node can have children. Note that it
doesn’t necessarily have to have chil-
dren at this time.

ggeettCChhiillddAAtt((iinntt cchhiillddIInnddeexx)) Returns the child at the specified
index.

ggeettCChhiillddCCoouunntt(()) Returns how many children this
node has.

ggeettIInnddeexx((TTrreeeeNNooddee nnooddee)) Returns the index of the referenced
child.

ggeettPPaarreenntt() Returns the parent of this node.
Each node will need to keep a refer-
ence to its parent. This could cause a
slight reconstruction in the way that
you initially construct your tree.

iissLLeeaaff(()) Simple boolean method that
returns whether or not this node is a
leaf. Note that a leaf is a node that
cannot have children, not one that
doesn’t currently have any children.

34 July 2003 www.JavaDevelopersJournal.com

their actual data that causes a doubling
of the number of classes in the JTree.
While this certainly works (even the
tutorials from Sun do this), it’s not the
most efficient way to handle a JTree.

To remove this doubling of objects
in the tree, one of two things can be
done:
1. Don’t use any data objects inside the

DefaultMutableTreeNode.
2. Have your data objects that are going

to be represented by a tree imple-
ment TreeNode.

Clearly, not putting any of your data
objects in the tree is self-defeating, so
we’ll explore the second option –
implementing the TreeNode interface.
We don’t need to implement the actual
model since the default model expects
and knows how to handle the
TreeNode interface. Thus our data

objects that will be displayed in the
Tree need to implement the methods
shown in Table 2.

None of these methods impact the
data you’re representing and they have
very little to do with the GUI. Thus your
design integrity stays intact. However,
this allows you to modify the data
directly, notify the model that the data
has changed, and not have to go
through an intermediary layer and deal
with casting from Object, and so on.
This eliminates numerous method calls
and the creation of objects that serve
very little purpose.

Conclusion
The Swing API is more complicated

than other graphical APIs on the mar-
ket. A large portion of this is attributed
to the Model-View-Control design pat-
tern. However, as developers we can

avoid compounding the complexity of
Swing by reducing the amount of code
that we lay on top of it.

When you go through the optimiza-
tion phase of your project, look at each
method dealing with the GUI and see if
there are any method calls that you can
remove, any objects that are unneces-
sary, and any objects you can avoid cre-
ating by implementing the model inter-
faces yourself instead of creating wrap-
per objects. Once that’s complete, start
looking for operations that take a long
time and consider putting them into
separate worker threads instead of the
primary GUI thread.

These simple steps will dramatically
improve the performance of Swing
while still adhering to the OO paradigm
as well as the single-threaded rules.

References
• The Swing Connection:

http://java.sun.com/products/jfc
/tsc/

• Java Platform Performance: Strategies
and Tactics: http://developer
.java.sun.com/developer/Books/per-
formance/

• Christmas Tree Applications:
http://java.sun.com/products/jfc/tsc
/articles/ChristmasTree/

GRAPHICAL API
J2

SE
H

O
M

E
J2

E
E

J2
M

E

Marcus S. Zarra is
the director of tech-

nology at Extraquest
Corporation in

Denver, Colorado. He
began developing

professionally in
1985 for school sys-

tems and then for
legal firms in

Phoenix, Arizona.
Marcus has been a

Java developer since
1996, working in the
banking, telecommu-
nications, and insur-

ance industries.

mzarra@
extraquest.com

The Swing API is
more complicated

than other graphical APIs
on the market”

“

Create enterprise web applications with powerful
desktop-like user interfaces.

The Asperon AppProjectorTM lets you easily create sophisticated
web applications that have the full functionality of desktop
applications and the ability to be deployed in a browser without
a client install.

Get real-time interactive updates from server.
Scroll through thousands of records in seconds.
Powerful application model provides up to10 x
reduction in development time.

www.asperon.com
Download your free trial today!

TM

M
36 July 2003 www.JavaDevelopersJournal.com

any engineers complain that the non-deterministic behavior of the garbage
collector prevents them from utilizing the Java environment for mission-
critical applications, especially distributed message-driven displays (GUIs)
where user responsiveness is critical. We agree that garbage collection does
occur at the worst times: for example, when a user clicks a mouse or a new
message enters the system requiring immediate processing. These events
must be handled without the delay of in-progress garbage collection. How
do we prevent these garbage collection pauses that interfere with the
responsiveness of an application (“bothersome pauses”)?

We have discovered a very effective technique to prevent bothersome
garbage collection pauses and build responsive Java applications. This tech-
nique or pattern is especially effective for a distributive message-driven dis-
play system with soft real-time constraints. This article details this pattern in
three simple steps and provides evidence of the effectiveness of the tech-
nique.

Pattern to Control Garbage Collection Pauses
The Java environment provides so many benefits to the software com-

munity – platform independence, industry momentum, a plethora of
resources (online tutorials, code, interest groups, etc.), object-oriented utili-
ties and interfaces (collections, network I/O, Swing display, etc.) that can be

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Why not tell the
garbage collector

what and when
to collect?”

“

 Garbage Collection Pauses
Avoid Bothersome

Use Java in mission-critical display systems

by Lillian Katherine Andres,
 Chris M. Cargado,
 & M. Valerie Underwood

37July 2003www.JavaDevelopersJournal.com

plugged in and out – that once you have experienced work-
ing with Java it’s hard to go back to traditional languages.
Unfortunately, in some mission-critical applications, like
message-driven GUIs that must be very responsive to user
events, the requirements force you to take that step back-
ward. There’s no room for multiple second garbage collection
pauses. (The garbage collector collects all the “unreachable”
references in an application so the space consumed by them
can be reused. It’s a low-priority thread that usually only
takes priority over other threads when the VM is running out
of memory.) Do we really have to lose all the benefits of Java?

First, let’s consider the requirements.
A system engineer should consider imposing require-

ments for garbage collection like the following list taken from
a telecom industry example (see References).
1. GC sequential overhead on a system may not be more

than 10% to ensure scalability and optimal use of system
resources for maximum throughput.

2. Any single GC pause during the entire application run may
be no more than 200ms to meet the latency requirements
as set by the protocol between the client and the server,
and to ensure good response times by the server.

38 July 2003 www.JavaDevelopersJournal.com

Armed with these requirements, the system engineer has
defined the worst-case behavior in a manner that can be
tested.

The next question is: How do we meet these require-
ments? Alka Gupta and Michael Doyle make excellent sug-
gestions in their article (see References). Their approach is to
tune the parameters on the Java Virtual Machine (JVM). We
take a slightly different approach that leaves the use of
parameter definitions as defined by the JVM to be used as a
final tuning technique.

Why not tell the garbage collector what and when to col-
lect?

In other words, control garbage collection via the soft-
ware architecture. Make the job of the garbage collector
easy! This technique can be described as a multiple step pat-
tern. The first step of the pattern is described below as
“Nullify Objects.” The second step involves forcing garbage
collection to occur as delineated in “Forcing Garbage
Collection.” The final step involves either placing persistent
data out of the reach of the collector or into a data pool so
that an application will continue to perform well in the long
run.

Step 1: Nullify Objects
Memory leaks strike fear into the hearts of program-

mers! Not only do they degrade performance, they eventu-
ally terminate the application. Yet memory leaks prove
very subtle and difficult to debug. The JVM performs
garbage collection in the background, freeing the coder

from such details, but traps still exist. The biggest danger
is placing an object into a collection and forgetting to
remove it. The memory used by that object will never be
reclaimed.

A programmer can prevent this type of memory leak by
setting the object reference and all underlying object refer-
ences (“deep” objects) to null when the object is no longer
needed. Setting an object reference to “null” tells the garbage
collector that at least this one reference to the object is no
longer needed. Once all references to an object are cleared,
the garbage collector is free to reclaim that space. Giving the
collector such “hints” makes its job easier and faster.
Moreover, a smaller memory footprint also makes an appli-
cation run faster.

Knowing when to set an object reference to null requires a
complete understanding of the problem space. For instance,
if the remote receiver allocates the memory space for a mes-
sage, the rest of the application must know when to release
the space back for reuse. Study the domain. Once an object
or “subobject” is no longer needed, tell the garbage collector.

Thus, the first step of the pattern is to set objects to null
once you’re sure they’re no longer needed. We call this step
“nullify” and include it in the definition of the classes of fre-
quently used objects.

The following code snippet shows a method that “nulli-
fies” a track object. The class members that consist of primi-
tives only (contain no additional class objects) are set to null
directly, as in lines 3–5. The class members that contain class
objects provide their own nullify method as in line 9.

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Figure 1 Tactical display

Need an Embeddable
Process Engine

Without All the
BAGGAGE?

We’ve got
The Answer SM

Workflow Automation – Business Process Integration – Web Services Orchestration

Let’s get right to the point. Reactor 5 from Oak Grove Systems is the process execution framework that
gives you exactly what you need. Period.

One lean, mean, singularly focused machine, Reactor 5 is already the solution of choice for such firms as
SAS, Sybase and Plumtree Software, allowing them to cut their costs, speed their time to market and free
their developers to concentrate on their core products. Reactor 5’s benefits include:

■ Universal Deployability - Reactor 5 is compatible across all J2EE application servers
■ Easy Integration - Featuring an open, standards-based architecture
■ The Only Process Engine You Need - For workflow automation, business

process management and Web Services orchestration

Available as source code with royalty free distribution!

So take a load off. And you can start by calling us at 1-818-880-8769, or by downloading your free
evaluation copy at www.oakgrovesystems.com/jdj

The Answer SM - For All Your Process Execution Needs

©
 2

00
3

O
ak

 G
ro

ve
 S

ys
te

m
s.

 A
ll

rig
ht

s
re

se
rv

ed
.

40 July 2003 www.JavaDevelopersJournal.com

1 public void nullify () {

2

3 this.threatId = null ;

4 this.elPosition = null ;

5 this.kinematics = null ;

6

7 if (this.iff != null)

8 {

9 this.iff.nullify();

10 this.iff = null ;

11 }

12 }

The track nullify is called from the thread that has com-
pleted processing the message. In other words, once the
message has been stored or processed, that thread tells the
JVM it no longer needs that object. Also, if the object was
placed in some Collection (like an ArrayList), it’s removed
from the Collection and set to null.

By setting objects to null in this manner, the garbage col-
lector and thus the JVM can run more efficiently. Train your-
self to program with “nullify” methods and their invocation
in mind.

Step 2: “Force” Garbage Collection
The second step of the pattern is to control when garbage

collection occurs. The garbage collector, GC, runs as
Java priority 1 (the lowest priority). The virtual

machine, VM, runs at Java priority 10 (the
highest priority). Most books recommend

against the usage of Java priority 1 and 10

for assigning priorities to Java applications.
In most cases, the GC runs during idle times,

generally when the VM is waiting for user input or
when the VM has run out of memory. In the latter case,

the GC interrupts high-priority processing in the application.
Some programmers like to use the “-Xincgc” directive on

the Java command line. This tells the JVM to perform garbage
collection in increments when it desires. Again, the timing of
the garbage collection may be inopportune. Instead, we sug-
gest that the garbage collector perform a full garbage collec-
tion as soon as it can in either or both of two ways:

1. Request garbage collection to happen as soon as possible:
This method proves useful when the programmer knows
he or she has a “break” to garbage collect. For example,
after a large image is loaded into memory and scaled, the
memory footprint is large. Forcing a garbage collection to
occur at that point is wise. Another good area may be after
a large message has been processed in the application and
is no longer needed.

2. Schedule garbage collection to occur at a fixed rate: This
method is optimal when the programmer does not have a
specific moment when he knows his application can stop
shortly and garbage collect. Normally, most applications
are written in this manner.

Listing 1 introduces a class named “BetterControlOfGC”.
It’s a utility class that provides the methods described earlier.
There are two public methods: “suggestGCNow()” and
“scheduleRegularGC(milliseconds)” that respectively corre-
spond to the steps described earlier. Line 7 suggests to the
VM to garbage collect the unreachable objects as soon as
possible. The documentation makes it clear that the garbage
collection may not occur instantaneously, but experience has
shown that it will be performed as soon as the VM is able to
accomplish the task. Invoking the method on line 25 causes
garbage collection to occur at a fixed rate as determined by
the parameter to the method.

In scheduling the GC to occur at a fixed rate, a garbage
collection stimulator task, GCStimulatorTask, is utilized. The
code extends the “java.util.timer” thread in line 10. No new
thread is created; the processing runs on the single timer
thread available beginning with the Java 1.3 environment.
Similarly, to keep the processing lean, the GC stimulator fol-
lows the Singleton pattern as shown by lines 18–23 and line
27. There can be only one stimulator per application, where
an application is any code running on an instance of the
JVM.

We suggest that you set the interval at which the
garbage collector runs from a Java property file. Thus you
can tune the application without having to recompile the
code. Write some simple code to read a property file that’s
either a parameter on the command line or a resource
bundle in the class path. Place the command parameter “-
verbose:gc” on your executable command line and meas-
ure the time it takes to garbage collect. Tune this number
until you achieve the results you want. If the budget
allows, experiment with other virtual machines and/or
hardware.

Step 3: Store Persistent Objects into Persistent Data Areas or Store
Long-Lived Objects in Pools

Using persistent data areas is purely optional. It supports
the underlying premise of this article. In order to bind the
disruption of the garbage collector in your application, make
its job easy. If you know that an object or collection of objects
would live for the duration of your application, let the collec-
tor know. It would be nice if the Java environment provided
some sort of flag that could be placed on objects upon their
creation to tell the garbage collector “–keep out”. However,
there is currently no such means. (The Real-Time

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Figure 2 Performance bar chart

“Typically, most engineers want proof before
changing their approach to designing and coding”

42 July 2003 www.JavaDevelopersJournal.com

Specification for Java describes an area of memory called
“Immortal Memory” where objects live for the duration of
the application and garbage collection should not run.) You
may try using a database; however, this may slow down your
application even more. Another solution currently under the
Java Community Process is JSR 107. JCache provides a stan-
dard set of APIs and semantics that allow a programmer to
cache frequently used data objects for the local JVM or across
JVMs. This API is still under review and may not be available
yet. However, we believe it holds much promise for the Java
developer community. Keep this avenue open and in mind
for future architectures. What can we do now?

The pooling of objects is not new to real-time program-
mers. The concept is to create all your expected data objects
before you begin processing, then all your data can be placed
into structures without the expense of instance creation dur-
ing processing time. This has the advantage of keeping your
memory footprint stable. It has the disadvantage of requiring
a “deep copy” method to be written to store the data into the
pool. (If you simply set an object to another, you’re changing
the object reference and not reusing the same space.) The
nanosecond expense of the deep copy is far less than that of
the object instance creation.

If the data pooling technique is combined with the proper
use of the “nullify” technique, garbage collection becomes
optimized. The reasons are fairly straightforward:
1. Since the object is set to null immediately after the deep copy,

it lives only in the young generation portion of the memory. It
does not progress into the older generations of memory and
thus takes less of the garbage collector’s cycle time.

2. Since the object is nullified immediately and no other ref-
erence to it exists in some other collection object in the
application, the job of the garbage collector is easier. In
other words, the garbage collector does not have to keep
track of an object that exists in a collection.

When using data pools, it’s wise to use the parameters “-
XX:+UseConcMarkSweepGC –XX:MaxTenuringThreshold=0
–XX:SurvivorRatio=128” on the command line. These tell the
JVM to move objects on the first sweep from the new genera-

tion to the old. It commands the JVM to use the concur-
rent mark sweep algorithm on the old generation

that proves more efficient since it works “concur-
rently” for a multi-processor platform. For single

processor machines, try the “-Xincgc” option.

We’ve seen those long garbage collector pauses,
which occur after hours of execution, disappear using

this technique and these parameters. Performing well in the
long run is the true benefit of this last step.

Performance Results
Typically, most engineers want proof before changing

their approach to designing and coding. Why not? Since we’re
now suggesting that even Java programmers should be con-
cerned about resource allocation, it better be worth it! Once
upon a time, assembly language and C programmers spent
time tweaking memory and register usage to improve per-
formance. This step was necessary. Now, as higher-level

object-oriented programmers we may disdain this thought.
This pattern has dared to imply that such considerations,
although not as low level as registers and memory addresses
(instead at the object level), are still necessary for high-per-
formance coding. Can it be true?

The underlying premise is that if you know how your
engine works, you can drive it better to obtain optimal per-
formance and endurance. This is as true for my 1985 300TD
(Mercedes, five cylinder, turbo diesel station wagon) with
265,000 miles as for my Java code running on a HotSpot VM.
For instance, knowing that a diesel’s optimal performance is
when the engine is warm since it relies on compression for
power, I let my car warm up before I “push it.” Similarly, I
don’t overload the vehicle with the tons of stuff I could place
in the tailgate. HotSpot fits the analogy. Performance
improves after the VM “warms up” and compiles the HotSpot
code into the native language. I also keep my memory foot-
print lean and light. The comparison breaks down after
awhile, but the basic truth does not change. You can use a
system the best when you understand how it works.

Our challenge to you is to take statistics before and after
implementing this pattern on just a small portion of your
code. Please recognize that the gain will be best exemplified
when your application is scaled upward. In other words, the
heavier the load on the system, the better the results.

The following statistics were taken after the pattern was
applied. They are charted as:
1. Limited nullify method invocation is used where only the

incoming messages are not “nullified.” (The remainder of
the application from which the statistics were taken was
left intact with a very lean memory usage.) There is no
forced garbage collection.

2. Nullify method invocation and forced garbage collection is
utilized.

The test environment is a Microsoft Windows 2000 X86
Family 15 Model 2 Stepping 4 Genuine Intel ~1794MHz lap-
top running the BEA WebLogic Server 7.0 with Service Pack
7.1 with a physical memory size of 523,704KB. The Java
Message Server (JMS server), a track generator, and a tactical
display are all running on the same laptop over the local
developer network (MAGIC). The server makes no optimiza-
tions, even though each application resides locally. The JVMs
are treated as if they were distributed across the network.
They’re running on the J2SE 1.4.1 release.

The test target application is a Java Swing Tactical Display
with full panning, zooming, and track-hooking capabilities. It
receives bundles of tracks via the Java Message Service that
are displayed at their proper location on the given image.
Each track is approximately 88 bytes and the overall contain-
er size is about 70 bytes. This byte measurement does not
include all the additional class information that’s also sent
during serialization. The container is the message that holds
an array of tracks that contains information such as time and
number of tracks. For our tests, the tracks are sent at a 1Hz
rate. Twenty sets of data are captured.

To illustrate the test environment, a screen capture of a
5,000 track load (4,999 tracks plus the ship) is shown in Figure

J2
SE

H
O

M
E

J2
E

E
J2

M
E

“The pattern to help control garbage collection pauses most
definitely improves the overall performance of the application”

44 July 2003 www.JavaDevelopersJournal.com

1. The background shows tracks rendered with the Military
Standard 2525B symbology over an image of the Middle East.
The small window titled “Track Generator Desktop” is a mini-
mized window showing the parameters of the test set through
the track generator application. Notice that 45 messages had
been sent at the time of the screen capture. Directly beneath
this window sits the Windows Task Manager. Note that the
CPU utilization is at 83%. At first this doesn’t seem that bad.
But at that rate, there isn’t much room for the user to begin
zooming, panning, hooking tracks, and so on. The final com-
mand window to the right is that of the tactical display appli-
cation. The parameter “-verbose:gc” is placed on the Java
command line (java –verbose:gc myMainApplication.class).
The VM is performing the listed garbage collection at its own
rate, not by command of the application.

The final test of 10,000 tracks performed extremely poorly.
The system does not scale; the CPU is pegged. At this point
most engineers may jeer at Java again. Let’s take another look
after implementing the pattern.

After implementation, where the nullify methods are
invoked properly and garbage collection is requested at a
periodic interval (2Hz), dramatic improvements are realized.
The last test of 10,000 tracks proves that the processor still
has plenty of room to do more work. In other words, the pat-
tern scales very well.

Performance Summary
The pattern to help control garbage collection pauses

most definitely improves the overall performance of the
application. Notice how well the pattern scales under the
heavier track loads in the performance bar chart in Figure 2.
The darker middle bar shows the processor utilization at
each level of the message (track) load. As the message traffic
increases, the processor utilization grows more slowly than
without the pattern. The last light-colored bar shows the
improved performance. The main strength of the pattern is
how well it scales under heavy message loads.

There is another subtle strength to the pattern. This one is
difficult to measure since it requires very long-lived tests. If
Step 3 is faithfully followed, those horribly long garbage col-
lection pauses that occur after hours of running disappear.
This is a key benefit to the pattern since most of our applica-
tions are designed to run “forever.”

We’re confident that many other Java applications would
benefit from implementing this very simple pattern.

The steps to control garbage collection pauses are:
1. Set all objects that are no longer in use to null and make

sure they’re not left within some collection. “Nullify”
objects.

2. Force garbage collection to occur both:
• After some major memory-intense operation (e.g.,

scaling an image)
• At a periodic rate that provides the best performance for

your application
3. Save long-lived data in a persistent data area if feasible or

in a pool of data and use the appropriate garbage collector
algorithm.

By following these three simple steps, you’ll avoid
those bothersome garbage collection pauses and enjoy all
the benefits of the Java environment. It’s time the Java
environment was fully utilized in mission-critical display
systems.

References
• Gupta, A., and Doyle, M. “Turbo-Charging the Java

HotSpot Virtual Machine, v1.4.x to Improve the
Performance and Scalability of Application Servers”:
http://developer.java.sun.com/developer/technicalArticle
s/Programming/turbo/

• JSR 1, Real-Time Specification for Java:
http://jcp.org/en/jsr/detail?id=1

• Java HotSpot VM options:
http://java.sun.com/docs/hotspot/VMOptions.html

• Java Specification Request for JCache:
http://jcp.org/en/jsr/detail?id=107

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Listing 1

1 public class BetterControlOfGC {
2 // only schedule garbage collection for the application once
3 private static boolean done = false ;
4
5 public static void suggestGCNow ()
6 {
7 System.gc () ;
8 }
9
10 private class GCStimulatorTask extends java.util.TimerTask {
11 public void run () {
12 suggestGCNow () ;
13 }
14 }
15
16 private static GCStimulatorTask instance = null ;
17
18 private synchronized GCStimulatorTask getInstance () {
19 if (instance == null) {
20 instance = new GCStimulatorTask () ;
21 }
22 return instance ;
23 }
24
25 public void scheduleRegularGC (long intervalMilliSecs) {
26 if (!done){ // only schedule 1 garbage collector per appl
27 GCStimulatorTask stimulator = getInstance () ;
28 java.util.Timer scheduler = new java.util.Timer () ;
29 scheduler.scheduleAtFixedRate (stimulator, 10, 30
30

intervalMilliSecs);
31 done = true ;
32 }
33 else
34 {
35 System.err.println("GC Task already scheduled.") ;
36 }
37 }
38
39 public BetterControlOfGC () {}
40 }

Lillian Andres is a lead member of the engineering staff at Lockheed-
Martin. She has 20+ years of experience and loves the challenge of not
only architecting mission-critical systems but also implementing them
with the latest technologies.

lillian.andres@lmco.com

Chris Cargado is a member of the infrastructure team for the U.S. Navy’s
“CG/DDG Open Architecture” initiative. She has spent over 12 years ana-
lyzing, architecting, evaluating, and integrating mission-critical commer-
cial enterprise applications and military tactical weapon systems with
judicious use of commercial software and hardware technologies.

chris.m.cargado@lmco.com

M. Valerie Underwood is a principal member of the engineering staff
with Lockheed-Martin and is architecting enterprise computing system
products while still influencing tactical system architectures. She has
been working with system architectures in the challenging field of mis-
sion-critical system development for the majority of her 20-year career.

valerie.underwood@lmco.com

46 July 2003 www.JavaDevelopersJournal.com

here can you go to make your MIDlets
available to the public? Let’s take a brief
tour of some of the Web sites that offer
MIDlets to the public and explore some
of the factors you should consider.

As with so much in life, one dis-
criminator is money – are you provid-
ing your apps for free, or do you want
to make money from them? Some
sites, such as midlet.org, offer only free
MIDlets, so if you want to make money
you need to look elsewhere. Some sites
provide a mix of free, shareware, and
pay-per-download MIDlets, and some
provide just the last.

Another factor is which devices your
app targets. While “write once, run any-
where” is a nice concept, the range of
physical characteristics of MIDP
devices, such as screen size and black
and white or color, plus whether your
app uses additional APIs such as
Bluetooth (JSR-82), may limit you to a
subset of MIDP devices. If such limita-
tions constrain you to a specific manu-
facturer or network provider, you may
wish to use that vendor or provider’s
publication and delivery mechanism,
as is available at Motorola’s www.iden
dev.com or Cingular’s http://alliance.
cingularinteractive.com. However, you
may not have to restrict yourself to that
manufacturer’s or provider’s Web
site(s), as some third-party sites have
agreements to distribute MIDlets for
manufacturers and providers. For
example, Microjava
(www.microjava.com) has an agree-
ment with Motorola and Nextel that
allows Microjava to certify MIDlets for
Motorola/Nextel’s iDen phones and
distribute those MIDlets to Motorola
and Nextel.

Since you probably want to expose
your MIDlets to the largest possible set
of potential users, place them on a site
that generates a lot of traffic. Ideally
you’d like to know such things as the
number of visitors to the site within a
specified period and the number of pur-
chases of similar apps, but this informa-
tion may not be available. So you might
consider other factors instead, such as
the site’s target audience and how many
J2ME apps it currently offers. A site that

provides only J2ME apps may draw
fewer visitors than one that also pro-
vides non-J2ME apps, and a large cata-
log of apps is likely to draw more visitors
than a small catalog.

Handango (www.handango.com)
has the largest number of MIDlets by
far, offering over 1,700 (counting sepa-
rate versions of an application for dif-
ferent platforms as separate applica-
tions). Because Handango also has
many non-J2ME applications, your
potential customer pool can include
not just the J2ME cognoscenti, but also
customers who are unaware of J2ME
and come across your application in
their quest for the latest addition to
their handhelds.

Assuming you’re in this for the
bucks, how much can you expect to
make? Although you may think your
wonderful application should com-
mand premium rates, in the world of
independent MIDlet marketing you
need to look to volume for any real
profit. In my admittedly cursory survey
of pricing, most apps seem to be
priced at under $7 per download, with
games in the $2–$5 range and a few
applications, such as browsers and e-
mail viewers, in the $20–$35 range.
And, of course, the distributor takes a
cut – 30% at Handango and Microjava.

These are only some of the factors
to consider when marketing your
MIDlets, and I’ve only mentioned a
subset of sites where MIDlets can be
published. For a more extensive list
visit my Web site at www.oojava.com
and click J2ME->Midlet Marketplace.

• • •
Here’s real news you can use: regis-

tered developers can get a free copy of
Metrowerks CodeWarrior Wireless
Studio from www.microjava.com or
kb.motorola.metrowerks.com/motorola.

• • •
In last month’s editorial I misidenti-

fied the person at NanoAmp with
whom I discussed the technical
aspects of their MOCA-J accelerator.
Ron Stein provided me with that infor-
mation, while Jason Steach arranged
the discussion. My thanks to both Ron
and Jason.

The MIDlet
Marketplace

W

J2ME INSIGHT

The MIDlet Marketplace

Where can you go to make

your MIDlets available to the

public? Let’s take a brief tour of

some of the Web sites that offer

MIDlets to the public and

explore some of the factors you

should consider.

Glen Cordrey is a software
architect working in the

Washington, DC, area. He’s been
using Java for five years,

developing both J2EE and J2ME
applications for

commercial customers.

glencordrey@sys-con.com

46

Glen Cordrey
J2ME Editor

H
O

M
E

J2
E

E
J2

SE
J2

M
E

48Xlet: A Different
Kind of Applet

for J2ME

BREW CAN TURN J2ME INTO $4U.

GOT J2ME APPS? BREW = IMED8 OPR2NTY 4 JAVA DEVELOPERS 2 BLD FORTUNE.

In plain, simple English, BREW is the open, end-to-end wireless development solution that’s

compatible with Java.The BREW Distribution System can put your J2ME application into the

hands of millions of paying customers fast. And the worldwide market is growing, as operators

and OEMs continue to adopt the BREW platform. Learn how you can make money with BREW

for Java applications. Read the Brew and J2ME White Paper at www.qualcomm.com/brew.
©2003 QUALCOMM Incorporated.All rights reserved.QUALCOMM is a registered trademark of QUALCOMM Incorporated.BREW and Customize.Personalize.Realize. are trademarks of QUALCOMM Incorporated. Java and J2ME are trademarks of Sun Microsystems, Inc.

™ ™ ®

TM TM

48 July 2003 www.JavaDevelopersJournal.com

n September 2002, Sun released the J2ME Personal Profile
1.0. Unlike the MIDP, which is the core technology for Java-
enabled wireless phones based on Connected Limited Device
Configuration (CLDC), Personal Profile is based on the
Connected Device Configuration (CDC). The CDC provides a
virtual machine that includes a full Java 2 Virtual Machine
feature set. Compared to CLDC, it assumes more memory
and higher availability on network connections.

The Personal Profile contains a full set of AWT APIs that
support a graphical user interface (GUI), including support
for applets and Xlets, and provides a complete application
environment for the high-end PDA market. It expands the
J2ME territory to include devices that require a full GUI and a
high degree of compatibility with the PersonalJava and J2SE
application environment.

The Xlet application model, which is inherited from the
Personal Basis Profile, is one of its most important features.
What is an Xlet? Like an applet in J2SE, it’s an application
that must be run in an application manager. In other words,
it does not have a main() method and cannot be run in
standalone mode. However, it implements an interface that
the application manager can use to manage its state.

Xlets potentially may play a more important role in J2ME
compared to an applet in J2SE. Downloading third-party
Xlets provides a way for a PDA to dynamically expand its
functionality. One Xlet can even provide services to other
Xlets through Inter-Xlet Communication, which makes it
easy to develop client/server style applications that consist of
multiple Xlets with fine modularity.

In this article, I’ll talk about the Xlet life cycle and how to
write an Xlet.

Xlet Life Cycle
An Xlet must implement four methods defined in the

javax.microedition.xlet.Xlet interface:

public interface Xlet {

public void initXlet(XletContext ctx)

throws XletStateChangeException;

public void startXlet()

throws XletStateChangeException;

public void pauseXlet();

public void destroyXlet(boolean

unconditional) throws

XletStateChangeException;

}

Xlets, like applets, have a life cycle. The Xlet application
manager uses these four methods to interact with an Xlet to
manage its state. It’s impractical to talk about Xlet program-
ming without mentioning the Xlet life cycle. So before going
into the programming details, let’s take some time to under-
stand an Xlet’s life cycle.

An Xlet has four states:
• Loaded: The Xlet is loaded from local storage or network

and its no argument constructor is called. It can enter the
paused state if the Xlet’s initXlet() method is called.

• Paused: The Xlet is initialized and ready to be active. It’s
like the ready state of a process: ready to run in the CPU at
any time. It can enter the active state after the Xlet’s
startXlet() is called.

• Active: The Xlet is running normally. It can enter the
destroyed state if its destroyXlet() method is called. It may
also return to the paused state if its pauseXlet() method is
called.

• Destroyed: This is the terminal state. Once it’s entered, it
cannot return to other states. All its resources are subject
to be claimed.

In addition, an Xlet may enter the destroyed state from
any other state. The possible state changes are demonstrated
in Figure 1.

Implementing the Xlet Interface
Now that we have a better idea of the Xlet life cycle, let’s

take a closer look at the Xlet interface. The methods defined
in this interface are also called life-cycle methods. Keep in

H
O

M
E

J2
E

E
J2

SE
J2

M
E

I

50 July 2003 www.JavaDevelopersJournal.com

mind that user applications, including the Xlet, should not
directly invoke life-cycle methods. (Even if they do, state
change will not happen.) It is the Xlet application manager
that invokes these methods to notify an Xlet to change its
state. In a sense those methods are more like event handlers.

initXlet(XletContext ctx)
This method initializes the Xlet after it’s loaded and

instantiated. Note that it takes the XletContext as a parame-
ter. This is a very important parameter as it’s the only way for
the Xlet to get hold of its running context. In particular, the
XletContext class provides methods to retrieve the parame-
ters that are passed to the Xlet when it’s loaded and a con-
tainer in which the Xlet can put AWT components. More
important, through XletContext an Xlet can initiate state
change itself or communicate with other Xlets.

In Listing 1, an Xlet prints all its arguments in a TextField
in its initXlet() method. Note that
XletContext.getContainer() may throw
UnavailableContainerException. This happens if the imple-
mentation has only one displayable container and multiple
Xlets are trying to access it simultaneously. In our example,
upon catching such an exception the Xlet throws an
XletStateChangeException to notify the Xlet application
manager that it cannot initialize and needs to be destroyed.

startXlet() and pauseXlet()
The startXlet() method notifies the Xlet to start providing

service and moves it to the active state. The pauseXlet()
method does the opposite: it asks the Xlet to stop providing
service and moves it back to the paused state.

The difference between initXlet() and startXlet() is
that the former can be called only once, while the

latter can be called many times in its life cycle
whenever the Xlet application manager wants
the Xlet to enter or resume the active state.
startXlet() is a reentry method. All initializa-

tion work or things that cannot be done
twice should be put in initXlet() instead of

startXlet(), otherwise you risk having problems
with the Xlet.

Normally, you would expect that the business logic is
implemented in the startXlet() method. However, the
Personal Profile specification states that all the methods
defined in the Xlet interface are meant to signal state
changes and the Xlet application manager expects those
methods to return quickly. If a method fails to return with-
in a certain amount of time that is implementation
dependent, the Xlet manager may destroy the Xlet thinking
that something is wrong with it. It’s important that you
don’t put a lengthy implementation of business logic inside
any of the life-cycle methods. If the Xlet provides some
service that could go on and on, you may start a thread
that provides the actual service and communicate with the
thread, for example, by setting certain flags in the life-cycle
methods.

destroyXlet(boolean unconditional)
This method signals the Xlet to terminate and enter the

destroyed state. The Xlet must release all resources. The
parameter “unconditional” is interesting; it’s set by the Xlet
application manager to signal whether it wants the Xlet to be
destroyed unconditionally. If unconditional is set to false, the
Xlet may throw a StateChangeException to indicate that it
does not want to be destroyed. However, it’s still up to the
Xlet application manager to decide whether to accept or
deny such a request. In other words, even though throwing
such an exception is a valid response, the fate of the Xlet is
still at the mercy of the Xlet application manager. If the
request is accepted, the Xlet application manager will give
the Xlet some time before it calls the destroy() method again,
most likely with unconditional set to true. If unconditional is
set to true, the Xlet application manager will ignore any
XletStateChangeException and go ahead and destroy the Xlet
once destroyXlet() returns.

Exceptions in Life-Cycle Methods
There are only two kinds of exceptions that can be thrown

from life-cycle methods: XletStateChangeException and
uncaught RuntimeException or error.

Any uncaught RuntimeException or error thrown from
the life-cycle methods will immediately cause the Xlet appli-

cation manager to invoke the method destroyXlet(true) of
the corresponding Xlet and put it in the destroyed state. That
means normally RuntimeException or error should be
caught by the Xlet to prevent it from being destroyed.

On the other hand, the Xlet may intentionally throw
XletStateChangeException in startXlet()to indicate that it’s
not ready for the state change yet.

Requesting State Change Using XletContext
As mentioned earlier, the life-cycle methods in the Xlet

interface are used by the Xlet application manager to com-
municate to the Xlet that it wants the Xlet to change state.
But what if the Xlet wants to change its own state? For exam-
ple, what if an end user wants to terminate an Xlet and he
doesn’t want to wait for the Xlet application manager to do
this?

The XletContext provides three methods that can be used
by the Xlet to initiate state change: notifyDestroyed(),
notifyPaused(), and resumeRequest(). notifyDestroyed() noti-

H
O

M
E

J2
E

E
J2

SE
J2

M
E

Figure 1 Possible state changes

“Xlets potentially may play a more
important role in J2ME compared

to an applet in J2SE”

52 July 2003 www.JavaDevelopersJournal.com

fies the Xlet application manager that the Xlet wants to ter-
minate. Before calling notifyDestroyed(), it should release all
resources, as it will in the event of a call to destroyXlet(). The
Xlet unconditionally and immediately enters the destroyed
state after this call.

notifyPaused() puts an Xlet in the paused state. An Xlet
may call notifyPaused() to make room for other Xlets to
run. Normally, a subsequent call to resumeRequest() will
make the Xlet return to active state. However, as the
method’s name suggests, it is a request and there’s no
guarantee that this request will be accepted. The intended
use of this method is to notify the Xlet application of its
intention to return to active state. It’s up to the Xlet appli-
cation manager to grant and schedule such a return. It
may wait for a long time before it returns, or it may not
return at all; the Xlet application manager may call
destroyXlet() to terminate a paused Xlet due to a lack of
certain resources.

Putting It All Together: A Simple Digital Clock
Let’s demonstrate the concepts and principles we’ve dis-

cussed so far through a sample Xlet. This Xlet displays a sim-
ple digital clock that shows the hour, minute, and second of
the current time. The clock can be paused or completely ter-
minated. I designed the Xlet in a way that the clock can be
controlled not only by its own buttons, but also by the Xlet
application manager via the Xlet’s life-cycle methods. If you
run the Xlet in Sun’s XletRunner, which is the Xlet application
manager for the Personal Profile reference implementation,
you’ll be able to control the Xlet through XletRunner’s inter-
active menus that were originally designed to manage the
Xlet’s life cycle. For example, if you want to pause the clock,

instead of clicking the clock’s pause button, you may go to
the XletRunner’s “ClockXlet” menu and choose “pause”.
Listing 2 provides the complete code.

Let’s first look at the MyClock class. Its main function is
to display the current time in a TextField. This class extends
Thread and its main body is implemented in Thread’s run()
method. It also has two flags to indicate whether pause or
stop is requested. If neither is requested, the clock runs nor-
mally and displays the current time once every second. If
pause is requested, the clock puts itself in an indefinite wait
until the pause flag is unset from outside, which awakens
the thread. If stop is requested, the thread simply termi-
nates.

MyClock is controlled by ClockXlet. The initXlet() method
creates a TextField that’s used by MyClock and buttons that
are used to control the clock. It then starts MyClock as a
thread. startXlet() and pauseXlet() methods are quite simple
and return quickly. (Remember, we said that the life-cycle
methods should return quickly.) They basically set or unset
MyClock’s pause flag, which in turn pauses or resumes the
execution of the MyClock thread. The destroyXlet() method

sets MyClock’s stop flag, which in turn terminates the thread.
This step releases resources, where the resource is the CPU.

The actionPerformed() method translates the end user’s
actions to corresponding state change requests to the Xlet
application manager. Clicking the clock’s pause button will
pause the clock. It will also send a request to the Xlet appli-
cation manager to enter the paused state by calling
XletContext.notifyPaused(). (Our ClockXlet is being nice
here by not only pausing the thread, but also going to the
paused state to give other Xlets a chance to run.) Clicking
the clock’s resume button will cause the Xlet to request a
return to the active state. Once this request is accepted
(hopefully!) by the Xlet application manager, it will call the
Xlet’s startXlet() method, where the clock will be started
again. That is why we don’t need to directly interact with
MyClock in handling this event. Clicking the stop button will
stop the clock and send a request to the Xlet application
manager to terminate the Xlet.

Use the following command to run the Xlet in Sun’s refer-
ence implementation (you can download Sun’s Personal
Profile Runtime Environment from http://java.sun.com/
products/personalprofile/download.html):

./cvm com.sun.xlet.XletRunner \

-name ClockXlet –path $MyClassPath

where $MyClassPath is the path where ClockXlet class will be
loaded.

What you see on the screen will be similar to Figure 2. Use
the buttons next to the TextField or “ClockXlet” menu in
XletRunner to control the clock. Have fun!

Summary
Xlets, like applets, can only run in an application manag-

er. Xlets have a life cycle that includes four states: loaded,
paused, active, and destroyed. To write an Xlet, you must
implement the Xlet interface. The Xlet application manager
changes the state of an Xlet through the life-cycle methods
defined in the Xlet interface. Moreover, Xlets can initialize
state change by using the XletContext API.

Copyright 2003 Sun Microsystems, Inc. All rights reserved. Used by permission.

Sun, Sun Microsystems, the Sun logo, Java, J2ME, PersonalJava, and J2SE are trademarks or registered

trademarks of Sun Microsystems, Inc., in the United States and other countries.

H
O

M
E

J2
E

E
J2

SE
J2

M
E

Xiaozhong Wang
is a Sun Certified Java program-

mer and developer. Currently, he
is a software engineer at Sun

Microsystems. He developed the
test suite for Xlet in the Personal
Profile Technology Compatibility
Kit 1.0, and his work has helped
to refine the Xlet specification in

Personal Profile 1.0.

xiaozhong.wang@sun.com

Figure 2 ClockXlet as shown in Suns’s Xlet Runner

“There are only two kinds of exceptions that can
be thrown from life-cycle methods:

XletStateChangeException and uncaught
RuntimeException or error”

Get the full story – attend an exclusive webinar:

http://java.quest.com/qcj/jdj

Quest CentralTM

for J2EE

It shouldn’t be happening, but it is – unexpected performance

problems in your production J2EE application! Now’s not the time

for guesswork and random, piecemeal diagnostic tools – you need

an integrated solution for managing live application performance.

Accelerate detection, diagnosis and resolution of J2EE performance

problems with Quest Central for J2EE.

Only Quest Central for J2EE provides production-ready application

management with unparalleled diagnostic depth for every expert on

the team, ensuring that your live J2EE applications continue to fire

on all cylinders.

Foglight ® PerformaSure TM JProbe®

Real world performance management for
live J2EE systems

®

© 2003 Quest Software, Inc. Quest, Quest Central, Foglight, PerformaSure and JProbe are trademarks or registered trademarks of Quest Software, Inc. Java and all Java-based marks are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All other products are trademarks or registered trademarks of their respective companies.

Detect critical J2EE

problems 24x7 –

automatically alert and

trigger diagnostics

Diagnose problems across

all tiers and components

with unique transactional

Tag and Follow technology

Resolve code-level

performance with deep,

award-winning diagnostics

toolkit

54 July 2003 www.JavaDevelopersJournal.com

H
O

M
E

J2
E

E
J2

SE
J2

M
E

Listing 1 Xlet argument
public void initXlet(XletContext ctx)

throws XletStateChangeException {
Container c;
try {

c = ctx.getContainer();
} catch (UnavailableContainerException e) {

throw new XletStateChangeException(e.getMessage());
}
TextField tx = new TextField(30);
String[] args = (String[]) ctx.getXletProperty(XletContext.ARGS);
String s = "";
for (int i = 0; i < args.length; i++) {

s = s + args[i] + " ";
}
tx.setText(s);
c.setSize(200, 200);
c.setVisible(true);
c.add(tx);

}

Listing 2 A simple digital clock
import javax.microedition.xlet.*;
import java.util.*;
import java.awt.*;
import java.awt.event.*;

public class ClockXlet implements Xlet, ActionListener {

TextField display;
MyClock clock;
Button pauseButton = new Button("Pause");
Button stopButton = new Button("Stop");
Button resumeButton = new Button("Resume");
XletContext context;
public void initXlet(XletContext ctx)

throws XletStateChangeException {
Container c;
context = ctx;
try {

c = ctx.getContainer();
} catch (UnavailableContainerException e) {

throw new XletStateChangeException(e.getMessage());
}
display = new TextField(30);
clock = new MyClock(display);
pauseButton.addActionListener(this);
resumeButton.addActionListener(this);
resumeButton.setEnabled(false);
stopButton.addActionListener(this);
c.setSize(200, 200);
c.setVisible(true);
c.add(display);
c.add(pauseButton);
c.add(resumeButton);
c.add(stopButton);
clock.start();

}

public void startXlet() {
clock.setPaused(false);
resumeButton.setEnabled(false);
pauseButton.setEnabled(true);

}

public void pauseXlet() {
clock.setPaused(true);
resumeButton.setEnabled(true);
pauseButton.setEnabled(false);

}

public void destroyXlet(boolean unconditional) {
clock.setStopped(true);

}

public void actionPerformed(ActionEvent e) {
if (e.getSource() == stopButton) {

clock.setStopped(true);
context.notifyDestroyed();

} else if (e.getSource() == pauseButton) {
clock.setPaused(true);
resumeButton.setEnabled(true);
pauseButton.setEnabled(false);
context.notifyPaused();

} else if (e.getSource() == resumeButton) {
context.resumeRequest();

}
}

}

class MyClock extends Thread {

boolean paused, stopped;
TextField display;

public MyClock(TextField t) {
display = t;

}

String getTime() {
Calendar rightNow = Calendar.getInstance();
String hour = String.valueOf(rightNow.get(Calendar.HOUR_OF_DAY));
String min = String.valueOf(rightNow.get(Calendar.MINUTE));
if (min.length() == 1) {

min = "0" + min;
}
String sec = String.valueOf(rightNow.get(Calendar.SECOND));
if (sec.length() == 1) {

sec = "0" + sec;
}
return hour + ":" + min + ":" + sec;

}

public synchronized boolean isStopped() {
return stopped;

}

public synchronized void setStopped(boolean value) {
stopped = value;
notifyAll();

}

public synchronized boolean isPaused() {
return paused;

}

public synchronized void setPaused(boolean value) {
paused = value;
notifyAll();

}

public void run() {
while (!isStopped()) {

try {
if (!isPaused()) {

Thread.sleep(1);
display.setText(getTime());

} else {
synchronized (this) {

wait();
}

}
} catch (InterruptedException e) {
}

}
}

}

Minds Meet

Where

Open
◗Learn how companies have achieved higher profits and increased their productivity by

utilizing Linux

◗Participate in LinuxWorld’s world-class education program and benefit from interactive
training in the all-new Hands-on Labs!

◗Discover the latest innovations and technologies from the hottest companies around

◗Hear the latest developments and updates on the state of open source at our analyst
roundtable discussion

CORNERSTONE SPONSOR PLATINUM SPONSORS

GOLD SPONSOR SILVER SPONSOR

www.linuxworldexpo.com

Conference: August 4-7, 2003
Expo: August 5-7, 2003

The Moscone Center
San Francisco, CA

Join us this August and see why Linux is thriving! Government agencies and companies
in the telecommunication, financial services, retail and manufacturing industries are turning to
Linux to save money. Isn’t it time you did? LinuxWorld. Where Open Minds Meet.

Analyst Roundtable
Open to All Registered Attendees

Wednesday, August 6th
1:30pm-2:30pm

State of Open Source Roundtable
Moderator: Larry Augustin, Partner, Azure Capital Partners
Panelists: Pierre Fricke, Executive Vice President of Web Application Infrastructure
and Product Lifecycle Management (PLM) Infrastructure, D.H. Brown Associates, Inc.;
Daniel Kusnetzky, Vice President, System Software Research, IDC; Ted Schadler,
Principal Analyst in Software, Forrester; George Weiss, Vice President and Research
Director, Gartner

Attend Keynotes and learn from inspiring visionaries who are devoted to Linux and open source.
Tuesday, August 5th
10:30am-11:30am

Linux: The Next Step
Peter Blackmore
Executive Vice President
Enterprise Systems Group
Hewlett-Packard

Tuesday, August 5th
1:30pm-2:30pm
Jonathan Schwartz
Executive Vice President
Software Group
Sun Microsystems, Inc.

Wednesday, August 6th
10:30am-11:30am

Linux and the Evolution of
the Internet
Irving Wladawsky-Berger
General Manager
IBM Corporation

Wednesday, August 6th
3:30pm-4:30pm
Charles Rozwat
Executive Vice President
Server Technologies Division
Oracle Corporation

Tuesday, August 5th
4:30pm-5:30pm
Matthew Szulik
Chairman, Chief Executive
Officer and President
Red Hat

Special Presentation
Open to All Registered Attendees

Tuesday, August 5th
12:00pm-1:00pm

The Golden Penguin Bowl
Host: Chris DiBona, Vice President – Marketing;
Co-Founder, Damage Studios, Inc.

58 July 2003 www.JavaDevelopersJournal.com

y laptop goes where I go. Some people
like to read; I like to hack code. Just ask
my wife – I took the laptop on vacation
to the Cayman Islands. The problem
I’m having is that I can never predict
the state of my online connection. At
home I’m wireless; at work, wired. In
between, such as my 90-minute daily
train commute, I’m neither. Don’t get
me started on the lousy connectivity
from the beach. That downtime is a
serious productivity killer, since all my
Web-enabled code becomes unstable.
There are many layers to a J2EE appli-
cation these days and I don’t control all
of them, so I have no guarantee that my
app will behave properly if a connec-
tion fails. Worst case scenarios – I might
time out, hang, or crash altogether.

The thing is I can predict my down-
times. If I take my network card out, it’s
a safe bet I don’t have a connection.
Instead of tackling the rather large
problem of detecting a good network
connection, I took a different approach.
I started researching whether I could
tell my application that I definitely did
not have a connection. If I could easily
write something that says “If not con-
nected, then don’t try to perform Net-
sensitive code,” that would take care of
the majority of my downtime. After
some research I discovered that
java.net.NetworkInterface, new in Java
1.4, does almost exactly what I need.

Guaranteeing that a machine is
“online” is near impossible (see side-
bar). Luckily I don’t need to solve that
problem. As I mentioned, I want to say
the opposite – to tell the computer that
I’m not online, rather than have it try to
guess. If either of my network adapters
(wireless and wired) is present and
active, I can assume I have connectivi-
ty. If neither is present, or if either is
present but for some reason inactive
(e.g., the DHCP server hasn’t given me
an address or my network cable is
unplugged), then I don’t.

Java.net.NetworkInterface has a
static method “getNetworkInterfaces”
that does what I need. Listing 1 pro-
vides a test program to display a
machine’s interfaces. (Listings 1–4 can
be downloaded from www.sys-
con.com/java/sourcec.cfm.) The dis-
play refreshes every second. Figure 1
shows the program in action on my
machine. I see either wlan0 (my wire-
less card) or eth0 (regular card). There
are several static methods I could have
used including getByName(String) that,
if I knew what interface I was looking
for, might work better for me. But why
limit myself? Don’t get too attached to
any names you see. A Mac friend of
mine reports “en0” as his network iden-
tifier. Don’t limit yourself by checking
for an interface because you think you
know its name.

Test out the program by disabling
your network adapter. On Linux, you

can issue an “ifdown” command on the
interface you’re disabling. On Windows
2000 it’s “Settings, LAN connection,
Properties, Disable.” The interface dis-
appears from the screen. Pop in anoth-
er card or just turn this one back on,
and it should come back.

Try deactivating the connection
instead. Leave the card in, but unplug
the network cable. The network inter-
face stays active, but there’s no longer
an InetAddress associated with it. This
didn’t work for me under Linux, only
Win2000 (and Mac). If you are working
with a DHCP server, you could also
issue a manual “DHCP release” com-
mand to simulate the same effect. It
isn’t sufficient just to check for the exis-
tence of an interface. I must also verify
that there’s an associated InetAddress
object.

Note: The “127.0.0.1” interface never
changes. This is the local loopback
device (it should say “loopback=true”
on the test program), and all machines
have it. It won’t help you connect to the
outside world. What I really want to
check for is any active network inter-
face with an associated InetAddress
that is not the local loopback device.
NetworkInterface doesn’t have anything
to help here, but InetAddress has a
method isLoopbackAddress().

With algorithm firmly in hand, I
wrote InterfaceCheck.java (see Listing
2). It provides a two-function API,
isNetworkAvailable() and
displayInterfaceInfo(). The first is
where my test for good interfaces will
be. The second I lifted from my earlier
test program and use as a way to dump
information on the available interfaces.
This is just for demo purposes; it’s not
necessary. I deliberately kept this bean
small and simple so I could use it any-
where.

The first place I applied my new test
was a JSP page that reads and formats
an RSS newsfeed. The taglib I’m using
doesn’t offer a way to fail gracefully if I
ask for an input stream from an exter-
nal machine and an exception is
thrown. Since I don’t need this particu-

java.net.
NetworkInterface
A road warrior’s friend Duane Morin

M

NETWORK CONNECTIVITY

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Figure 1 Network interface information

Figure 2 Sample tests

Figure 3 Sample tests

T h e NEW W I R E L E S S D ATA I N D U S T RY
O C T O B E R 2 1– 2 3 , 2 0 0 3

Sands ® EXPO and CONVENTION, Venet ian Hotel , Las Vegas, NV, USA

O C T O B E R 2 0 , 2 0 0 3 Pre-conference Seminars

O C T O B E R 2 1 , 2 0 0 3 CTIA Educational Sessions, Special Interest Seminars
& Exhibit Hall Preview Reception

O C T O B E R 2 2 - 2 3 , 2 0 0 3 Exhibits, CTIA Educational Sessions [10/22 only] & Special Interest Seminars

Your 00000001 to success
In just three days you can arm yourself

with everything you need to forge ahead

in the NEW wireless data industry.

Come see what CTIA WIRELESS I.T.
& ENTERTAINMENT 2003 has to offer:

● Comprehensive Exhibit Floor Showcasing
all of the Major Leaders in Wireless Data

● Executive Smart Pass Program on WiFi

● Quality Educational Programming and
Seminars on the Latest Wireless Data Issues

● Powerful Line-up of Keynote speakers

● Key Networking Receptions

For over seven years CTIA has fostered and helped build the wireless developer

community. Today, the CTIA WIRELESS I.T. & ENTERTAINMENT 2003 show has become the

one place where developers for each of the different platforms can meet to learn,

exchange ideas and form crucial partnerships.

www.ctiashow.com

Host Partners

60 July 2003 www.JavaDevelopersJournal.com

lar JSP to run properly in order to work
on other aspects of the system, I want-
ed a way to wrap this whole section in a
piece of logic that says, “If network is
available, try to load this RSS feed. Else
say ‘Network is down’ and move on.”

The JSP in Listing 3 shows the
result. The Net-sensitive code is sur-
rounded by an if-then block that uses
my InterfaceCheck bean to see if I’m
connected. Figures 2 and 3 show some
sample tests of the program in action.

Here I found a hole in my logic. My
test program was working fine, and
then I tried to access a URL of
“http://localhost:8080/...” When my
interfaces were down, it failed. But it
shouldn’t, since I should have access to
localhost (it’s my own machine after
all). Listing 4 shows my final version of
InterfaceCheck2.java with an extended
API for this situation. Provide the
address to which you want to connect;
the code handles it differently if it’s a
local address. If an external address is
provided and interfaces are down, an
UnknownHostException is thrown, so
return false (since the logic still holds,
the URL is still not available).

I could do other things with this pro-

NETWORK CONNECTIVITY
J2

SE
H

O
M

E
J2

E
E

J2
M

E

Duane Morin is an
independent consult-
ant with seven years

of experience as a
Java architect for the

financial services
industry. Will hack
code for food, or a
trip to the Cayman

Islands.

dmorin@
morinfamily.com

Detecting if a machine is connected to the
network is popular in any language. The prob-
lem is it makes no sense. What it often means is,
can this machine use a certain port to access a
certain application on a certain machine? To
answer that question there’s only one true test.
Try it. If it works, you answered your own ques-
tion.

What if it doesn’t? Now you’ll want to figure
out where the connection failed and why. Maybe
the application you wanted to connect to is not
running on the destination machine. Maybe the
machine is not up, period. Maybe the DNS is
screwed up or a firewall is getting in the way. For
all of these issues, it would still be true to say
that your machine is connected to the Net. You
just can’t connect where you want, the way you
want. When this happens, you’ll want to contact
the administrators of the remote machine as
soon as you can, if possible. There’s nothing as
annoying as debugging your connection for hours
before discovering that the remote machine was
down for maintenance and somebody forgot to
tell you.

Assuming that the remote machine is up, the
safest strategy for debugging your faulty connec-
tion is to work from your own machine outward.
Prove (or disprove) what you can, and move on.
This article demonstrates a technique for detect-

ing active network interfaces on a computer.
No interfaces, no connectivity. If there are inter-
faces, move on to the next step. Usually this
means “pinging” the remote machine.
Unfortunately for Java programmers there’s no
pure solution for implementing ping, due to the
low-level socket (ICMP) required. It can be done,
but most Java implementations rely on JNI. If
attempting to ping several remote machines
returns “No route to host” (or similar), then most
likely you have a gateway problem, and no traffic
is getting out from your machine. Of course, if
ping runs but doesn’t respond, this doesn’t mean
anything – the remote machine can be config-
ured to not respond to ping. Besides, since ping
runs at a different level of the TCP/IP stack than
most applications, you still haven’t found out
anything about the remote machine even if it
does respond. “I can ping it but can’t telnet to it”
is a common bug indeed.

Everyone has different strategies for debug-
ging a “down” machine, depending on the cir-
cumstances. The key is to work with the
knowns and try to reduce the variables in the
problem. Assuming you can know the status of
everything between your application and the
other guy’s is just asking for trouble. Know
what you can and can’t properly test. Don’t for-
get to call and ask if the other machine is up!
Why guess when a phone call or e-mail will tell
you for sure?

Hello, Net? Are You There?

–continued on page 70

62 July 2003 www.JavaDevelopersJournal.com

or the business people of the world,
Excel is like mother’s milk. I’m con-
vinced that my neighbor, a financial
planner for an investment bank, does
our homeowner’s reconciliation for
fun: a showcase for his Excel prowess.
It’s a sickness. Excel is powerful, sim-
ple to use, and ubiquitous in virtually
every market. The problem is that
those of us tasked with Excel integra-
tion know that at the binary level,
Excel is a gory mess and, as a rule,
does not play well with anything but
COM.

Extentech offers an intuitive, pure
Java API for Excel integration. Under
pressure from an anxious project man-
ager, I evaluated it side-by-side with
two other Java-based Excel integration
tools available on the Web: POI
(Apache Software Foundation) and
JExcel. The requirements were for a

fast, reliable tool that could push data
from a Java-based application server to
heavily formatted Excel templates in
either Windows or Solaris operating
systems.

Extentech packages its product
thoughtfully, so I was reading and writ-
ing cells within a half-hour of the
download. The object model is clean,
the Javadocs are fully commented, and
the concise manual provides ample
information about how to work
through common problems. My first 30
minutes using ExtenXLS were produc-
tive and reassuring. POI, while power-
ful and easy on the budget, has a signif-
icantly steeper learning curve. POI’s
online documentation, while amusing
and voluminous, is comparatively
arcane. Extentech got me started much
faster – a huge plus when you’re
strapped for time.

ExtenXLS works by first
ingesting the Excel spread-
sheet from either a byte array,
file path, or InputStream,
then parsing the binary
spreadsheet and providing an
API for accessing Workbook,
Spreadsheet, Row, Cell,
Formula, and other normal
Excel objects. Once changes

are written in memory through the API,
the spreadsheet can then be stored
back in its original form.

//Construct a workbook from a path string

String str_fileNameIn = "simple.xls";

WorkBookHandle book = new

WorkBookHandle(str_fileNameIn);

WorkSheetHandle sheet =

wbh_bookIn.getWorkSheet("Sheet1");

CellHandle cell = sheet.getCell("A1");

//Reading the value of an existing cell by ID

String s = (String) cell.getStringVal();

System.out.println("Cell G8: " + s);

//Writing the value of a cell

cell.setVal("Hello Darlin’ …");

//writing back to file

byte foo[] = book.getBytes();

File file_Out = new File(str_fileNameIn);

FileOutputStream fileOS_fileoutputstream = new

FileOutputStream(file_Out);

fileOS_fileoutputstream.write(foo);

fileOS_fileoutputstream.close();

Code Sample 1: A very simple example
of opening, reading, and writing
to/from a file on disk

The key differentiator that sold us
on ExtenXLS was its ability to write to
spreadsheets that contained macros.
All other Excel integration products
that I’ve seen truncate macros and VBA
code, no matter how simple, and write
only data back to the spreadsheet, ren-
dering it useless and/or corrupt! With
POI, I found that files with macros
would decrease in size after write oper-
ations by about the same number of
bytes as I had macro code. Subsequent
attempts to open the file would gener-
ally fail. ExtenXLS hiccupped on only

ExtenXLS Java/XLS
Toolkit 2.1
by Extentech Inc.

F

LABS

J2
SE

H
O

M
E

J2
E

E
J2

M
E

1032 Irving Street #910
San Francisco, CA 94122-2200
PPhhoonnee:: 415.759.5292
FFaaxx:: 800.787.6849
WWeebb:: www.extentech.com

• Sun 420R, Quad 450MHz, 4GB RAM, 500GB
Mounted SAN, Solaris 8

• Dell Latitude C610, Pentium 3, 833MHz, 20GB
Disk, 320 MB RAM, W2K Pro SP2

• JDK 1.3.1 as well as Jython 2.1 in both cases
• Excel 2000 (9.0.4402 SR1)

Extentech Inc.

Test Environment

Reviewed by
Peter Curran

The
Leading Magazine
for Corporate
and IT Managers

SAVE 30%
OFF!

REGULAR ANNUAL COVER PRICE $71.76

YOU PAY ONLY

$4999
12 ISSUES/YR

*OFFER SUBJECT TO CHANGE WITHOUT NOTICE

SUBSCRIBE
TODAY!

WWW.SYS-CON.COM
OR CALL

1-888-303-5282

The World’s Leading i-Technology Publisher

LinuxWorld
Magazine

There is no escaping the penetration of Linux into the corporate world. Traditional models are being

turned on their head as the open-for-everyone Linux bandwagon rolls forward.

Linux is an operating system that is traditionally held in the highest esteem by the hardcore or geek

developers of the world. With its roots firmly seeded in the open-source model, Linux is very much born

from the “if it’s broke, then fix it yourself” attitude.

Major corporations including IBM, Oracle, Sun, and Dell have all committed significant resources and

money to ensure their strategy for the future involves Linux. Linux has arrived at the

boardroom.

Yet until now, no title has existed that explicitly addresses this new hunger for information from

the corporate arena. LinuxWorld Magazine is aimed squarely at providing this group with the knowledge

and background that will allow them to make decisions to utilize the Linux operating system.

Look for all the strategic information required to better inform the community on how powerful an alternative Linux can be. LinuxWorld Magazine will not

feature low-level code snippets but will focus instead on the higher logistical level, providing advice on hardware, to software, through to the recruiting of trained

personnel required to successfully deploy a Linux-based solution. Each month will see a different focus, allowing a detailed analysis of all the components that

make up the greater Linux landscape.

FOR ADVERTISING INFORMATION:

CALL 201 802.3020 OR
VISIT WWW.SYS-CON.COM

Regular features

will include:

Advice on Linux Infrastructure

Detailed Software Reviews

Migration Advice

Hardware Advice

CEO Guest Editorials

Recruiting/Certification Advice

Latest News That Matters

Case Studies

www.LinuxWorld.comPremiering
August
2003

LINUXWORLD® IS THE REGISTERED TRADEMARK OF INTERNATIONAL DATA GROUP, INC.
SYS-CON IS USING THE MARK PURSUANT TO A LICENSE AGREEMENT FROM IDG
ALL BRAND AND PRODUCT NAMES USED ON THIS PAGE ARE TRADE NAMES, SERVICE MARKS, OR TRADEMARKS OF THEIR RESPECTIVE COMPANIES.

64 July 2003 www.JavaDevelopersJournal.com

the most Byzantine spreadsheets I
tried, and was polite enough to throw a
comprehensible exception.

When I first evaluated ExtenXLS in
Q4 2002, I had two complaints: no
InputStream constructor (only files and
byte arrays) and no support for named
ranges. The InputStream constructor
was provided as a patch release within
days of our enhancement request, and
named range support was recently
announced as a new feature.

For our purposes, these two
improvements have been huge. The
InputStream allows us to take spread-
sheets directly from the application
server document store, manipulate
them without any disk I/O, and stream
them back to the document store.
Named range support abstracts spread-
sheet data from its location within the
spreadsheet – our customers are free to
change their spreadsheet layout with-
out impacting the application server
integration. If the customer wants to
put the task percentage complete field
in D8 rather than D9, the application
integration is not impacted.

Performance improvements have
been noticeable as well. ExtenXLS ver-
sion 1.4 took up to 30 seconds to ingest
our larger spreadsheets, whereas ver-

sion 2.0 does the same job in under
three. Virtually all of the overhead now
comes from our own business logic.

The chief criticisms I have now are
bugs, not feature deficiencies.
Occasionally I find that template for-
matting, such as boxes around certain
regions, colored regions, etc., is
destroyed by writes to adjacent cells.
We surmounted these problems by lay-
ing out the templates more strategical-
ly, and by educating our users on some
of the fussy details.

Customer licensing is simple to
understand – being based on the num-
ber of CPUs in the deployment at
$1,145 per CPU. Deployment licenses
come with installation support (not
that you would need it), and one devel-
oper seat per CPU. Developer licenses
can be purchased independently, and
are also reasonably priced at $150.

In my view, ExtenXLS faces two
challenges going forward. First, the
Apache Software Foundation produces
excellent products that are widely
adopted in the Java community.
Luckily for Extentech, customers are
still willing to pay a premium for dedi-
cated support, and the ExtenXLS prod-
uct is easily as good as POI, and in my
view, even better.

More important, however,
Extentech, like any software vendor,
needs to look carefully at its Microsoft
strategy. Following Sun’s lead with an
all XML-based office suite in StarOffice
6, Microsoft has used XML under the
covers in Office 2003, making the nov-
elty of a Java Excel parser much less
novel. Nevertheless, the release of
Office 2003 and the adoption of it in
the enterprise are two very different
things. Extentech has the interim to
formulate new, fast, reliable, feature-
rich, and well-packaged ways of bridg-
ing the .NET and Java worlds.

LABS
J2

SE
H

O
M

E
J2

E
E

J2
M

E

TTaarrggeett AAuuddiieennccee:: Developers, architects, and
analysts

LLeevveell:: Beginner to intermediate
PPrrooss::
• Intuitive, flexible, well-documented API
• Can read/write spreadsheets that contain

macros and VBA
• Timely, thorough support
• Fast, reliable
CCoonnss::
• Some difficulty with extremely complicated

spreadsheets
• Occasional formatting problems

Snapshot

Peter Curran, a soft-
ware architect for

Intraspect Software
of Brisbane,

California, builds col-
laborative applica-
tions for high-tech

vendors, investment
banks, and systems

integrators. The
views expressed

herein are those of
the author and not

necessarily endorsed
by his employer.

pcurran@
intraspect.com

STEP UP
to the mike

and be...

ATTN: Developers

HEARD!
Go to
http://developer.sys-con.com

Make sure you have your finger on
the pulse of i-Technology...bookmark

http://developer.sys-con.com today.

i-Technology

News
i-Technology

Views
i-Technology

Comment
i-Technology

Debate

Calling Sleek Geeks
Everywhere!

© COPYRIGHT 2003,
SYS-CON MEDIA

WWW.SYS-CON.COM

1)
2)
3)

This one-day intensive workshop is designed for
developers who wish to increase the efficiency
and reliability of their code development.

The day will begin by looking at the various hints and tips you can utilize at the code

level to improve the quality and reduce the number of bugs you have to contend with.

The next part will look at Apache’s Ant and how you can use this freely

available tool for your own development, irrespective of your IDE.

Last, and most important, as the old saying goes: “You can never do enough

testing.” This session will look at JUnit and show you how to start building test

harnesses for your code so you can begin your testing strategy.

>Performance
Java is a powerful language. While it offers a rich array of tools, the fundamentals mustn’t be overlooked.
Improving your code at the core layer will result in great improvements in efficiency and produce (hopefully)
less bugs. We’ll look at the do’s and don’ts of programming and learn many hints and tips that will
accelerate your Java coding.

>Efficiency with Ant
Apache’s Ant is a powerful scripting tool that enables developers to define and execute routine software
development tasks using the simplicity and extensibility of XML. Ant provides a comprehensive mechanism for
managing software development projects, including compilation, deployment, testing, and execution.
In addition, it is compatible with any IDE or operating system.

> Reliability with JUnit
A critical measure of the success of software is whether or not it executes properly. Equally important,
however, is whether that software does what it was intended to do. JUnit is an open-source testing framework
that provides a simple way for developers to define how their software should work. JUnit then provides test
runners that process your intentions and verify that your code performs as intended. The result is software
that not only works, but works in the correct way.

May:
NEW YORK
DALLAS

June:
ATLANTA
BOSTON

Coming to you...

SaturdaySessions
We understand the pressures of work and how difficult it can be to get time off.
That is why we have designed this workshop to be held in one day and, as a special
bonus, on the weekend, so no days off from work. Your boss will be happy!

W TM T SF S

PRODUCED BY

SPONSORED BY

Alan Williamson
JDJ Editor-in-Chief

Performance > Efficiency > Reliability

What you will receive...

✓ INTENSIVE ONE-DAY SESSION

DETAILED COURSE NOTES AND ✓ EXCLUSIVE ONLINE RESOURCES

✓ JDJ CD ARCHIVE

ONLY$295 *
*JDJ subscribers($395 non-subscribers)———————————————————*GROUP DISCOUNTSAVAILABLE

To Register

www.sys-con.com/education

Call 201 802-3058

ALL BRAND AND PRODUCT NAMES USED ON THIS PAGE ARE TRADE NAMES, SERVICE MARKS, OR TRADEMARKS OF THEIR RESPECTIVE COMPANIES.

PRESENTED BY

Focus on Java
Focus on Web Services
Focus on Mac OS X
Focus on XML
Focus on .NET

WebSphere

XML

®

®

SEPT. 30 - OCT. 2, 2003
S a n t a C l a r a , C A

Java is a registered trademark of Sun Microsystems, .NET is a registered trademark of Microsoft, Mac OS X is a registered trademark of Apple Computer, Inc., WebSphere is a regis-
tered trademark of IBM. All other product names herein are the properties of their respective companies.

International Web Services Conference & Expo

WEST
Web Services Edge 2003

EXTENDING THE ENTERPRISE

WITH WEB SERVICES THROUGH JAVA,

.NET, WEBSPHERE, MAC OS X

AND XML TECHNOLOGIES

EXTENDING THE ENTERPRISE

WITH WEB SERVICES THROUGH JAVA,

.NET, WEBSPHERE, MAC OS X

AND XML TECHNOLOGIES

CONTACTS:

Exhibit & Sponsorship

GRISHA DAVIDA
201 802-3004
grisha@sys-con.com

Conference & Education

MICHAEL LYNCH
201 802-3055
mike@sys-con.com

Over 100 participating companies will display and demonstrate
over 300 developer products and solutions.

Over 2,000 Systems Integrators, System Architects, Developers,
and Project Managers will attend the conference expo.

Over 60 of the latest sessions on training, certifications,
seminars, case studies, and panel discussions will deliver

REAL World benefits, the industry pulse and proven strategies.

www.sys-con.com

JAVA TECHNOLOGY
The Java Track features presentations aimed at the beginner, as well as the
seasoned Java developer. Sessions will explore the whole spectrum of Java,
focusing on J2EE, application architecture, EJB & J2ME. In addition the Track
will cover the latest in SWT, Ant, JUnit, open source frameworks, as well as an
in-depth look into the vital role that Java is playing in building and deploying
Web services.

Sessions will focus on:
Enterprise Java 1.4
Ant Applied in “Real World” Web Services
Developing Application Frameworks w/SWT
Empowering Java and RSS for Blogging
JUnit: Testing your Java w/JUnit
JDK1.5: The Tiger
Simplifying J2EE Applications
Using IBM’s Emerging Technologies Toolkit (ETTK)
Apache Axis
Meeting the Challenges of J2ME Development
Integrating Java + .NET
Squeezing Java

.NET TECHNOLOGY
Presentations will explore the Microsoft .NET platform for Web services. To the
average developer, it represents an entirely new approach to creating software
for the Microsoft platform. What’s more, .NET development products - such as
Visual Studio .NET - now bring the power of drag-and-drop, GUI-based pro-
gramming to such diverse platforms as the Web and mobile devices.

Sessions will focus on:
ASP.NET
Security
VB.NET
.NET and XML
Smart Device Extensions for VS.NET
Best Practices
Shared Source CLI
.NET Remoting
Smart Devices in Health Care Settings
Mobile Internet Toolkit
ROTOR
Portable .NET
ASP.NET Using Mono
Using WSE with IBM’s WSTK
GUI applications Using Mono
Portals – Windows Sharepoint Services/Sharepoint Portal Server
Windows Server 2003 and IIS 6
.NET and Java Interoperability
Distributed .NET for Financial Applications
Developing C# with Eclipse

WEB SERVICES TECHNOLOGY
Presentations will include discussions of security, interoperability, the role of
UDDI, progress of the standards-making bodies, SOAP, and BPM. Case studies
cover the design and deployment of Web services in the marketplace.

Sessions will focus on:
Interoperability
Enterprise Networks
Web Services Management
Web Services Standards
Web Services Orchestration
Security (WS-Security, SAML)
BPEL4WS
UDDI: Dead or Alive?
ebXML & Web Services
EAI & Web Services
RPC vs. Messaging: Uses
and Differences
User Interfaces for Web Services
Web Services Best Practices
Service Oriented Architecture

MAC OS X
OS X represents a new wave of operating systems. It combines the ease of use of
a Mac with the power of Unix. Sessions in this track will highlight the use of the
Mac OS X platform in applications and Web services development, deployment
and management.

Sessions will focus on:
Introducing OS X (Panther): What's New?
Quick Applications using AppleScript
Enterprise Java and OS X
Developing Web Services Using WebObjects
Xserve: Ease of OS X and Power of Unix
Introducing Quartz: 2D Graphics for Apple
OS X for the Unix Developer
Securing OS X Applications
Java and OS X: A Perfect Marriage
Programming Rich User Interfaces Using Cocoa

XML TECHNOLOGY
Presentations will focus on the various facets of XML technologies as they are
applied to solving business computing problems. Sessions will include emerg-
ing standards in XML Schemas, XML repositories, industry applications of
XML, applying XML for building Web services applications, XML/XSLT/
XQuery-based programming using Java/.NET, XML databases, XML tools and
servers, XML-based messaging, and the issues related to applying XML in
B2B/EAI applications. The XML Track is geared for audiences ranging from
beginners to system architects and advanced developers.

Sessions will focus on:
XML Standards & Vocabularies
Introduction to XForms
Securing Your XML and Web Services Infrastructure
XQuery Fundamentals: Key Ingredient to Enterprise Information Integration
XML and Enterprise Architecture: Technology Trends
Standards-Based Enterprise Middleware Using XML/Web Services
XML and Financial Services
Canonical Documents for Your Business: Design Strategies
XPath/XSLT 2.0: What’s New?
XML Schema Best Practices
XML in EAI, Enterprise Portals, Content
Management

XML

MEDIA SPONSORS:

SEPT. 30 - OCT. 2, 2003
S a n t a C l a r a , C A

WEST
Web Services Edge 2003

WEB SERVICES EDGE
CONFERENCE & EDUCATION

PRODUCED BY

For more information visit
www.sys-con.com

or call

201802-3069

68 July 2003 www.JavaDevelopersJournal.com

Fiorano Releases FioranoMQ 7.0
(Los Gatos) – Fiorano Software, Inc., a
provider of enterprise integration mid-
dleware has announced the release of
FioranoMQ 7.0, the next generation of
the industry’s Java messaging server.
New features include support for high
availability (HA), distributed transac-
tions (XA), and enhancements to the
administration and management tools.
www.fiorano.com

Wily Technology Integrates
Introscope 4.1 with Oracle9iAS
(San Francisco) – Wily Technology, a
provider of Enterprise Java Application
Management and a member of the
Oracle PartnerNetwork, has announced
that Introscope 4.1, the newest version
of Wily’s Enterprise Java Application
Management solution, is now integrated
with and supports Oracle9i Application
Server. Together, these solutions help
businesses ensure that their Java appli-
cations on Oracle9i Application Server
can meet the high demand for perform-
ance and availability.
www.wilytech.com

Oak Grove Systems Introduces New
Managed Source Licensing Model
(Calabasas, CA) – Oak Grove Systems,
the business process execution compa-
ny, has announced the release of
Reactor 5 Source Code PLUS, a Java-
based product that will provide devel-
opers with a low-risk way to process-
enable applications. Reactor 5 Source
Code PLUS Managed Source licensing
model provides all the benefits of
licensed software: embedding services,
full support, and ongoing development,
along with the freedom of open source;
and royalty free distribution and own-

ership of the completed software prod-
uct code “to the core.”
www.oakgrovesystems.com

Sun Launches Products and Programs
to Unite Wireless Java Community
(San Francisco) – Sun Microsystems,
Inc., has launched a comprehensive
mobile developer program and joined
forces with wireless industry leaders to
announce an industry initiative for
application testing to help the wireless
industry bring Java technology-based
applications and services to market
quickly and cost effectively. Sun also
announced plans to launch an end-to-
end mobile enterprise development
platform to help service providers and
enterprises extend their current IT
investments into 2.5 and 3G wireless
networks.
www.sun.com

Oracle Previews New Approach to
Application Development
(San Francisco) – Oracle has introduced
Oracle9i JDeveloper version 9.0.5. The
new release simplifies application
development and improves developer
productivity through its new Oracle
Application Development Framework
(Oracle ADF).

Oracle ADF is a standards-based
J2EE framework that provides a foun-
dation for designing and creating J2EE
applications and Web services for
developers of all skill levels, allowing
them to choose the technologies and
development style that best match
their skill sets and the requirements of
their specific projects.
www.oracle.com

New Parasoft Java Solution
Debuts at JavaOne
(Monrovia, CA) – Parasoft, a provider of
Automated Error Prevention software
and solutions, has announced the gen-
eral availability of Parasoft Java
Solution, a complete package of auto-
mated tools, services, and the best
practices needed to prevent errors in
Java applications. The Parasoft Java
Solution integrates error prevention
and monitoring techniques into the
full life cycle of any Java development
project.
www.parasoft.com

ObjectFX Delivers SpatialFX 3.3
(Minneapolis) – ObjectFX is now
delivering version 3.3 of its flagship
software platform SpatialFX. The
updated product adds new features
targeting government customers
along with advanced Web capabilities
and advanced J2EE capabilities and
conformance. ObjectFX is a provider
of location-based services (LBS) soft-
ware based on J2EE standards that
supports asset management capabili-
ties through the integration of busi-
ness information with Web-enabled
spatial interfaces such as mapping,
vehicle routing, and other spatial
operations.
www.objectfx.com

Evant Announces Support for IBM
WebSphere Application Server
(San Francisco) – Evant, a provider of
retail management software and servic-
es, has announced support for IBM
WebSphere Application Server, a high-
performance and scalable transaction
engine for e-business applications
based on the J2EE standard. Evant’s
support for WebSphere signals an
increase in its activities with IBM. Evant
is already a participant in IBM’s
Initiative for Emerging Technology
Developers, a program that nurtures
innovative ISVs (Independent Solution
Vendors) in hot technology growth
areas by providing full technical and
marketing support to help them suc-
ceed.
www.evant.com

Borland/Sony Ericsson Team to
Accelerate Java Development for
Wireless Devices
(San Francisco) – Borland Software
Corporation and Sony Ericsson Mobile
Communications AB have announced a
strategic relationship to extend the sup-
port of enhanced mobile application
development. Under the terms of the
agreement, Borland plans to distribute
and support the Sony Ericsson Java
Software Development Kit (SDK)
through the Borland JBuilder 9 Mobile
Edition, accelerating the application
development life cycle for wireless
Java-based devices.
www.borland.com
www.ericsson.com

Industry News

PRESSROOM

J2
SE

H
O

M
E

J2
E

E
J2

M
E

(San Francisco) – Macromedia has announced that ColdFusion MX has
achieved “Java Verified” status under the Sun Microsystems Java
Verification Program. The Java Verification Program is designed to identify
enterprise applications developed with J2EE technology that are intended
to be portable across different implementations of J2EE. Macromedia
ColdFusion MX, the server scripting environment for creating Internet appli-
cations, brings the ease of use and productivity of ColdFusion to the J2EE
platform.
www.macromedia.com

Macromedia ColdFusion MX ‘Java Verified’ for
Portability Across J2EE Application Servers

3-Pack
Pick any 3 of our
magazines and save
up to $27500

Pay only $175 for a
1 year subscription
plus a FREE CD
• 2 Year – $299.00
• Canada/Mexico – $245.00
• International – $315.00

6-Pack
Pick any 6 of our
magazines and save
up to $35000

Pay only $395 for a
1 year subscription
plus 2 FREE CDs
• 2 Year – $669.00
• Canada/Mexico – $555.00
• International – $710.00

9-Pack
Pick 9 of our
magazines and save
up to $40000

Pay only $495 for a
1 year subscription
plus 3 FREE CDs
• 2 Year – $839.00
• Canada/Mexico – $695.00
• International – $890.00

RECEIVE
YOUR DIGITAL

EDITION
ACCESS CODE
INSTANTLY

WITH YOUR PAID
SUBSCRIPTIONS

OFFER SUBJECT TO CHANGE WITHOUT NOTICE

A LIMITED TIME SAVINGS OFFER FROM SYS-CON Media

SUBSCRIBE TODAY
TO MULTIPLE MAGAZINES

Subscribe Online Today www.sys-con.com/2001/sub.cfm

AND SAVE UP TO $400 AND
RECEIVE UP TO 3 FREE CDs!

■ Web Services Journal
U.S.- Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ Java Developer’s Journal
U.S. - Two Years (24) Cover: $144 You Pay: $89 / Save: $55 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $49.99 / Save: $22
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $79.99 / Save: $4
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ Linux World Magazine
U.S. - Two Years (24) Cover: $143 You Pay: $79.99 / Save: $63 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $32
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $79.99 / Save: $4
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ .NET Developer’s Journal
U.S. - Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ XML-Journal
U.S. - Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ ColdFusion Developer’s Journal
U.S. - Two Years (24) Cover: $216 You Pay: $129 / Save: $87 + FREE $198 CD
U.S. - One Year (12) Cover: $108 You Pay: $89.99 / Save: $18
Can/Mex - Two Years (24) $240 You Pay: $159.99 / Save: $80 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $99.99 / Save: $20
Int’l - Two Years (24) $264 You Pay: $189 / Save: $75 + FREE $198 CD
Int’l - One Year (12) $132 You Pay: $129.99 / Save: $2

■ WebLogic Developer’s Journal
U.S. - Two Years (24) Cover: $360 You Pay: $169.99 / Save: $190 + FREE $198 CD
U.S. - One Year (12) Cover: $180 You Pay: $149 / Save: $31
Can/Mex - Two Years (24) $360 You Pay: $179.99 / Save: $180 + FREE $198 CD
Can/Mex - One Year (12) $180 You Pay: $169 / Save: $11
Int’l - Two Years (24) $360 You Pay: $189.99 / Save: $170 + FREE $198 CD
Int’l - One Year (12) $180 You Pay: $179 / Save: $1

■ Wireless Business & Technology
U.S. - Two Years (24) Cover: $144 You Pay: $89 / Save: $55 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $49.99 / Save: $22
Can/Mex - Two Years (24) $192 You Pay: $139 / Save: $53 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $79.99 / Save: $16
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ PowerBuilder Developer’s Journal
U.S. - Two Years (24) Cover: $360 You Pay: $169.99 / Save: $190 + FREE $198 CD
U.S. - One Year (12) Cover: $180 You Pay: $149 / Save: $31
Can/Mex - Two Years (24) $360 You Pay: $179.99 / Save: $180 + FREE $198 CD
Can/Mex - One Year (12) $180 You Pay: $169 / Save: $11
Int’l - Two Years (24) $360 You Pay: $189.99 / Save: $170 + FREE $198 CD
Int’l - One Year (12) $180 You Pay: $179 / Save: $1

■ WebSphere Developer’s Journal
U.S. - Two Years (24) Cover: $360 You Pay: $169.99 / Save: $190 + FREE $198 CD
U.S. - One Year (12) Cover: $180 You Pay: $149 / Save: $31
Can/Mex - Two Years (24) $360 You Pay: $179.99 / Save: $180 + FREE $198 CD
Can/Mex - One Year (12) $180 You Pay: $169 / Save: $11
Int’l - Two Years (24) $360 You Pay: $189.99 / Save: $170 + FREE $198 CD
Int’l - One Year (12) $180 You Pay: $179 / Save: $1

■ 3-Pack ■ 1YR ■ 2YR ■ U.S. ■ Can/Mex ■ Intl.

■ 6-Pack ■ 1YR ■ 2YR ■ U.S. ■ Can/Mex ■ Intl.

■ 9-Pack ■ 1YR ■ 2YR ■ U.S.■ Can/Mex ■ Intl.

•Choose the Multi-Pack you want to order by checking
next to it below. •Check the number of years you want to
order. •Indicate your location by checking either U.S.,
Canada/Mexico or International. •Then choose which
magazines you want to include with your Multi-Pack order.

TO
ORDER

Pick a 3-Pack, a 6-Pack or a 9-Pack

70 July 2003 www.JavaDevelopersJournal.com

Test Infected Code
I think Jason Bell is right in his edi-

torial “Testing, Testing…” (Vol. 8,
issue 6) that the secret to testing is
adopting the right mind set. I agree
with Kent Beck and others that the
best way to write test code is to write
the test before the code you’re going
to test. This might sound crazy at first
but it makes a lot of sense. First, it
makes you more honest. If you’ve
already written and compiled code
you tend to lose interest. The fun bit
of working out how to do it and mak-
ing it compile and run is over. Writing
a test is boring after that. Writing the
test first is just as challenging as writ-
ing the code though, and you can be
honest and imaginative thinking up
test cases because you haven’t invest-
ed any time or pride in what you are
testing yet.

Ben Butchart
b.butchart@cs.ucl.ac.uk

Tester = Lowlife? Are You
Working for MS?

I cannot argue with the politics of
the subject, which sounds unfortunate-
ly true (“And the Artificial Stupidity
Award Goes to… [Vol. 8, issue 6]).
However, I object to the notion that art
school rejects are “forced to take up
jobs as software testers, technical writ-
ers, or quality auditors.”

I’m a developer at heart. After sever-
al years and several successful projects,
I did a few stints as a technical writer
and spent two years as a software
tester. In both cases, the new positions
involved a significant financial bonus.
These jobs were by no means demo-
tions.

I know that in a lot of places, the

tech writers and the software testers
couldn’t code their way out of a wet
paper bag, and are considered oxygen
wasters by the coders. The attitude of
coders toward doc and test has to
change. Otherwise, IT as a whole will
go into a deep crisis.

Fred Mora
via e-mail

Java an Open Standard?
Sun needs to decide if they want

J2EE (and Java for that matter) to be an
open standard or a product (“Pulling at
a Thread” by Alan Williamson [Vol. 8,
issue 5]). This continuing mix-up of
commercial interests with compliance
questions is bad for everyone including
Sun.

Alexander Jerusalem
ajeru@vknn.org

Testing Is Vital
I am a bit surprised that the word

test was not mentioned in Ajit Sagar’s
editorial about performance “The Proof
Is in the Concept” (Vol. 8, issue 5).
Perhaps test is included in the POC
resources that it mentions the client is
making available. I don’t think you
need to understand the particular defi-
nitions or distinctions between the
proof-of-concept and a prototype that
were given, but at whatever stage of the
project you should have some cus-
tomer performance requirements that
have been expressed somehow (other-
wise why bother considering perform-
ance) for which you can define and
execute a test. My suggestion is to con-
sider testing for the vital few perform-
ance requirements from the beginning
of the design as that will help you pro-

duce a better system sooner. Thanks for
the article.

Chris Thompson
cthompson@empirix.com

Increase Agility
Sun in this scenario should stick to

its current approach (“Is J2EE Too Big
for Its Own Good?” by Nigel Thomas
[Vol. 8, issue 4]). Remember that appli-
cation servers are not bought by devel-
opers who understand the various
specifications. Instead they’re usually
purchased by a corporate procurement
person or nontechnical manager.
Giving them the opportunity to search
for a single identifier increases agility.

James McGovern
james@webservicesarchitecture.com

Swing’s Time Is Over
SWT is really beneficial (“SWT: A

Native Widget Toolkit for Java” by Joe
Winchester and Steve Northover [Vol. 8,
issue 5]). Since the Eclipse team ports
the native implementation to multiple
platforms (Linux, AIX, Windows, to
name a few) the toolkit is just about as
portable as Java AWT and Swing, with
much better performance. The per-
formance is the key, especially with
large applications. I have run Eclipse
on AIX (a horrible OS) and it runs faster
than smaller Java apps, and like the last
guy said: if the user can’t tell it’s a Java
app, all the better. Stability and per-
formance, that’s what we need from a
widget toolkit. Though I like the archi-
tecture of Swing, I think that its time is
over.

Tim Osten
tosten@nims.net

Letters to the Editor

FEEDBACK

J2
SE

H
O

M
E

J2
E

E
J2

M
E

gram. You probably noticed that the
logic is called every time. The most
obvious thing would be to cache the
results and update periodically. There’s
something elegant about leaving it small
and simple, however. You can drop it in
anywhere you like (JSP, custom tag,
Swing application, etc.) and have it work
as is. Why keep messing with it?

Conclusion
This technique doesn’t detect good

connections; it detects their absence.
It’s easier. Your connection could fail
for any number of unpredictable rea-
sons on either end or somewhere in
the middle. But in situations where you
know you don’t have any connectivity
and temporarily need to tell your code
not to even try it, NetworkInterface
handles the job nicely.

–continued from page 60java.net.
NetworkInterface

Your customers don’t
take the summer off...

...your advertising
shouldn’t either

...your advertising
shouldn’t either

$1 Million...
Average individual subscriber’s
purchasing influence

$6 Million Budget
JDJ delivers subscribers with
purchasing influence and with
large financial commitments for
their software deployment
technology
SOURCE:

www.sys-con.com

While you may be putting
your advertising on hold for

the summer months,
JDJ readers are
still evaluating
and purchasing

competitive products

Taking the summer
off or selling
your product?

over 92%
of our readers
evaluated, recommended or purchased
products and services as a result of
seeing JDJ ads

For more information, contact the
JDJ Advertising Department at

(201) 802-3020 or
advertising@sys-con.com

72 July 2003 www.JavaDevelopersJournal.com

elcome to the July edition of JSR Watch!
Each month this column provides
information about the JCP program:
newly submitted JSRs, new draft specs,
Java APIs that were finalized, and other
news from the JCP program. This
month’s column discusses a set of new
J2EE technology JSRs, and a scripting
JSR, but I’ll start off with the J2ME envi-
ronment.

Two J2ME JSRs Are Nearly Final
JSR 179, Location API for J2ME tech-

nology, specifies how to write mobile
location-based applications for devices
with limited resources, producing
information to an application about
the device’s physical location. This
effort, led by Nokia, successfully navi-
gated the final approval ballot on June
2, collecting 14 yes votes from the ME
EC members. The second one is JSR
195, Information Module Profile. This
JSR just posted its proposed final draft
and is expected to enter the final
approval ballot very shortly. Originally
submitted in October of 2002, it has
been moving through the community
process at a very decent clip. The effort
is closely related to MID-P in that it
provides a Java runtime environment
similar to MID-P but for devices that
don’t have graphical display capabili-
ties. The JSR is co-led by Siemens and
Nokia.

Ease of Development
If you attended this year’s JavaOne

conference, you’ll have seen the above
phrase featured in various technical ses-
sions. It is also a topic that the Executive
Committees are discussing at our
monthly meetings, where it has the omi-
nous title “Making Java more attractive.”
These meetings contemplate whether

the community is developing the right
technologies and the right tools, and has
the needed developer programs to make
Java developers more productive and
significantly increase their number
beyond the current three million. The
JavaOne conference had several related
announcements but I’ll leave those to
the marketing folks. The JCP already
approved a few new JSRs that will help
ease the complexity of development –
such as JSRs 175, 181, 198, and 201. Now,
four new JSRs related to J2EE technology
have been added to the effort.

JSR 220 will define Enterprise
JavaBeans version 3. The main scope is
to reduce EJB’s complexity from a
developer point of view not only by
making use of metadata annotations
but also by providing utility classes,
more programmatic defaults, simplifi-
cation of stateless session beans, and
much more. JSR 221, JDBC version 4,
proposes to make use of new Java pro-
gramming language features such as
annotations and generics as well as pro-
vide sets of utility classes. JSR 222, the
next version of the Java API for XML
Data Binding, aims to complete the
support for all W3C XML Schemas. This
expert group is expected to work closely
with the new JSR 224, JAX-RPC 2.0,
expert group to establish better support
for several XML Schema data types. JSR
222 also expects to define the mapping
of Java to XML Schema (version 1 is
already defined the other way). And,
last, JSR 223, version 2 of JAX-RPC – this
effort proposes to add support for the
latest W3C and WS-I standards such as
SOAP 1.2 and WSDL 1.2. This JSR will
work closely with a number of others
such as JSR 181 (Web Services
Metadata) and JSR 173 (Streaming API
for XML).

A Scripting JSR
JSR 223, Scripting Pages in Java Web

applications, introduces the basic
technical foundation to bridge the
scripting community and the Java
community. This addresses a need for
application developers who use tech-
nologies like PHP, ECMAScript, and
Active Server Pages by setting a stan-
dard mechanism with which you can
access Java objects. These Java objects
could be in a Java servlet container or
in a Java VM. While PHP will be the
expert group’s first focus to provide a
binding for, other scripting languages
are considered as well. The Java Servlet
Specification (JSR 154) defines abstrac-
tions for Web application context,
request, response, and so on. When
writing Web applications, Java classes
and objects are developed that interact
in well-defined security, resource, and
class loader contexts. The JSR
describes how this is exposed to script-
ing languages.

Fifteen ME EC Members?
Those of you who watch the ballot

outcomes closely may have noticed
that there are 15 voting ME EC mem-
bers while there are 16 for SE/EE EC.
Zucotto Wireless, which was elected to
the ME EC in 2000 and reelected in
2001, has unfortunately closed its
doors. Its seat will be vacant until the
elections in November this year. Via
this forum I would like to thank the
folks of Zucotto for their hard work and
contributions to the Java community
and wish them well in their new adven-
tures.

That’s it for this month. I am very
interested in your feedback. Please e-
mail me with your comments, ques-
tions, and suggestions.

From Within the Java Community
Process Program
More mobility, less complexity

W

JSR WATCH

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Onno Kluyt

Onno Kluyt is the director of the
JCP Program Management
Office, Sun Microsystems.

onno@jcp,org

73July 2003www.JavaDevelopersJournal.com

Hyper-Threading Java
In early 2002 Intel became the first chip manu-

facturer to release a processor incorporating a new
technology known as Simultaneous Multi-
Threading or SMT. This article will explain the con-
cepts of SMT in layman’s terms, present the devel-
opment of an N-thread benchmarking suite, and
use that suite to produce concrete results of multi-
threaded benchmarks on HT and non-HT systems.

Java Games Development
I recently had a hankering to play an older (not

ancient) PC game that I used to enjoy. I would even
be tempted to dish out a few bucks to buy retro
games, if I could only be sure that they were going
to actually run successfully. How much easier
would this process have been if some of these
games had been written in Java? This had us think-
ing at JDJ (yet again) about games development in
Java. Which is the reason we’ve gathered together
an eclectic group of interested parties to discuss
that very topic – Java Games Development

Practical Integration of Java-Oriented
Technologies and 2.5/3G Platforms

While deploying services through 3G and 2.5G
wireless terminals presents challenges quite differ-
ent from those encountered in PCs and servers,
many familiar environments have been adapted to
resource-constrained devices. This article discusses
the practical integration of Java-oriented technolo-
gies and 2.5G/3G platforms and considerations you
should understand when dealing with resource
constraints and the management of software com-
ponents through development, testing, deploy-
ment, and maintenance.

Caché 5 by InterSystems
One of the key challenges facing Java develop-

ers is that their object-oriented applications use
data stored in relational databases. The result:
time- and cost-intensive mapping between the two
paradigms. InterSystems’ Corporation develops and
markets a post-relational database management
system called Caché that’s designed to address this
challenge by eliminating the impedance mismatch
between objects and tables.

FPO

Advertiser Index

GGeenneerraall CCoonnddiittiioonnss:: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of JJaavvaa DDeevveellooppeerr’’ss JJoouurrnnaall. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess of
the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject to
change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the con-
tent of their advertisements printed in JJaavvaa DDeevveellooppeerr’’ss JJoouurrnnaall. Advertisements are to be printed at the discre-
tion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred posi-
tions” described in the rate table. Cancellations and changes to advertisements must be made in writing before
the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

Asperon Corporation www.asperon.com 34

Borland Software Corporation go.borland.com/j1 4

CTIA Wireless I.T. www.ctiashow.com 59

Empirix Inc. www.empirix.com/know 866-228-3781 7

ESRI www.esri.com/mapobjectsjava 888-332-2320 21

Extentech www.extentech.com/jdjsale/ 35

Fair, Isaac & Company www.fairisaac.com/rules Cover III

InetSoft Technology Corp. www.inetsoft.com/jdj 888-216-2353 33

Infragistics, Inc. www.infragistics.com 800-231-8588 14-15

InstallShield Software Corp. www.installshield.com/mpjdj 23

iSavix http://isavix.net 703-689-3190 55

JetBrains www.intellij.com 9

Kenetiks, Inc www.kenetiks.com 888-KENETIKS 29

LinuxWorld Conference & Expo www.linuxworldexpo.com 56-57

LinuxWorld Magazine www.sys-con.com 888-303-5282 63

New Atlanta Communications www.newatlanta.com 49

Northwoods Software Corp. www.nwoods.com/go 800-434-9820 64

Oak Grove Systems www.oakgrovesystems.com/jdj 818-880-8769 39

Oracle oracle.com/experts 800-633-1072 11

Parasoft Corporation www.parasoft.com/jdj2 888-305-0041 19

QUALCOMM Incorporated www.qualcomm.com/brew 47

Quest Software, Inc. http://java.quest.com/performasure/jdj 13

Quest Software, Inc. http://java.quest.com/qcj/jdj 53

Quest Software, Inc. http://java.quest.com/jclass/jdj Cover IV

RealObjects www.realobjects.com 25

RefactorIT www.refactorit.com 60

ReportingEngines www.reportingengines.com/info/JDJ_July_ere.jsp 888-884-8665 17

ReportingEngines www.reportingengines.com/info/JDJ_July_ese.jsp 888-884-8665 26-27

ReportMill Software www.reportmill.com/webstart 214-513-1636 43

Software FX www.softwarefx.com 31

Sonic Software www.sonicsoftware.com Cover II

Sybase TechWave 2003 www.sybase.com/techwave2003 61

WebAppCabaret www.webappcabaret.com/jdj.jsp 41

Web Services Edge West 2003 www.sys-con.com 201-802-3069 66-67

Wily Technology www.wilytech.com 888-GET-WILY 51

Zero G www.zerog.com 415-512-7771 3

Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

Next Month
The Java platform was designed to be a robust, secure, and extensible plat-

form supporting the mobility of code and data. The Java classloader is a key
component in the Java Virtual Machine (JVM) toward the realization of these
goals. This article presents the Java classloader architecture and the implica-
tions of classloaders on platform security and extensibility.

Understanding the Java Classloading Mechanism

74 July 2003 www.JavaDevelopersJournal.com

hen Govindavajhala Sudhakar, a
Princeton college student from
Bangalore, presented a paper on JVM
security at an IEEE symposium on
computer security, the press naturally
took notice. In addition, the ink is still
wet on stories of how Muhammad
Danka took only a few minutes to find
a technique that allowed him to reset
passwords of any Microsoft Passport
user’s account – www.siliconvalley.com
/mld/siliconvalley/5822963.htm.

College students seem to be partic-
ularly adept at hacking and, with this in
mind, CNET reported: “New hacking
tool sees the light,” http://news.com
.com/2100-1009_3-1001406.html.

What Govindavajhala did was to
create a Java applet with two classes, A
and B (www.cs.princeton.edu/~sud
hakar/papers/memerr.pdf). The pro-
gram creates a single instance of A and
fills the remainder of the heap with
instances of B that point to the single-
ton A. A and B are defined so that the
size they occupy in the JVM (including
their object header) is a power of 2. If
one of the bits in the JVM where B
points to A were to flip, then there’s a
chance it would likely point to the base
of one of the B objects instead.

It’s hard to see how this corrupted
heap is little more than an academic
“so what?” However, the paper assures
us that this can be used to read and

write arbitrary JVM memory and
thereby poses a security threat. Giving
the benefit of the doubt on this issue,
how’s this bit flip going to occur on the
PC where the attack applet is lurking?

One method described is to rely on
chance because when a cosmic ray
interferes with the RAM holding the
JVM, random bit flips can occur. Not
content with waiting for this event to
happen, the paper describes how to
take apart a smoke detector to create a
source of alpha particles, or use high-
energy protons created by particle
accelerators, although the favored tech-
nique is infrared radiation. The
“researchers” opened the back of their
PC and shone a 50-watt light bulb onto
the memory chips. “As we were fine-
tuning this experiment, we found that
introducing large numbers of memory
errors would often cause the operating
system not only to crash, but to corrupt
the disk-resident software so that
reboot was impossible without reinstal-
lation of the operating system.” This is
some kind of research euphemism for
“Instead of our perfectly engineered
single bit flip, we kept frying the hard
drive by mistake.”

Not content with the unfortunate
experimental side effect of frazzling
their disk, the authors then go on to
describe how a real attacker would
not have the luxury of opening the

box anyway, and how for a desktop
PC “the attacker would have to heat
the entire box in an oven.” Remember
readers, the attacker is trying to just
flip a single bit in the JVM heap con-
taining his string of B objects, and
he’s just put your PC into an oven.
What happens if he overcooks it and
your prized 3GHz Pentium comes out
well done rather than rare? This is
covered with the superb understate-
ment, “We don’t know whether the
memory would become unreliable
before other components failed,” or
in other words “If your PC gets turned
to toast, it’s all in the name of scien-
tific progress.”

When questioned by CIOL,
www.ciol.com/content/develop
er/2003/103051401.asp,
Govindavajhala stated, “Now, in India,
some places go to 50ºC in the summer.
Probably bits are already flipping in my
homeland. Now, all I need to do to take
over a good number of machines in
India is to put this applet up on my
Web page and wait for hits from India
in summer. Computers of a billion peo-
ple are at stake.”

I think perhaps after spending too
long in the sun himself, it’s not only the
PC’s bits that have flipped. What’s next
for the IEEE, “Security Flaw: Monkeys
with typewriters break 128-bit encryp-
tion.”

The Lights Are On,
but No One’s Home

W

FROM THE INSIDE

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Ja
va

 D
ud

es

}

Fair Isaac Blaze Advisor lets you create, deploy and modify the rules that drive your

business — quickly, easily and cost-effectively. Maintained separately from the rest of

your system code, our business rule technology gives you unprecedented visibility into

and control over logical decisions used throughout your enterprise. Save time, save money,

save yourself headaches. Visit our Web site for more information about Fair Isaac

Blaze Advisor business rules management. It’s just a smarter way to do business.TM www.fairisaac.com/rules

Fair Isaac and It’s just a smarter way to do business are trademarks or registered trademarks of Fair Isaac Corporation,
in the United States and/or in other countries. Other product and company names herein may be trademarks or registered
trademarks of their respective owners. Copyright © 2003 Fair Isaac Corporation. All rights reserved.

C A N Y O U R C O D E

K E E P U P W I T H Y O U R

B U S I N E S S G R O U P ?

Evaluate and experience JClass today - visit:

http://java.quest.com/jclass/jdj

JClass®

Rich client user interface and utility components.

Server-side web client interface and reporting

components. Whatever type of Java development

you’re doing, JClass can help.

JClass ServerViews
Add professional content to your Servlet, JSP or J2EE

applications. Generate interactive charts with JClass

ServerChart and dynamic PDF

reports with JClass ServerReport.

Now fully XML and Web Services

ready!

JClass DesktopViews
Essential components for

client-side Java applications and

applets: 2D/3D charts, tables/grids,

data-entry fields, database access

and much more.

The only Java components you need
for J2EE or Swing development

© 2003 Quest Software, Inc. Quest, Sitraka and JClass are trademarks or registered trademarks of Quest Software, Inc. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All other
products are trademarks or registered trademarks of their respective companies.

